Tìm x thuộc z , biết:
\(\frac{x^2}{-5}\)= \(\frac{25}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
a) Điều kiện xác định của phân thức A là x#+-5
\(A=\frac{2\left(x+15\right)}{x^2-25}-\frac{x+3}{x+5}+\frac{x}{x-5}
\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{x+3}{x+5}+\frac{x}{x-5}\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+3\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{x\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-\left(x^2-5x+3x-15\right)+x^2+5x}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-x^2+5x+3x-15+x^2+5x}{\left(x+5\right)\left(x-5\right)}=\frac{15x+15}{\left(x+5\right)\left(x-5\right)}=\frac{15\left(x+1\right)}{\left(x+5\right)\left(x-5\right)}\)
tick đúng nha, ý b tí mình giải nhé
\(A=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x+5\right)\left(x-5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)
\(=\left(\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right).\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)
\(=\left[\frac{\left(x-x+5\right)\left(x+x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right].\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)
\(=\frac{5x.\left(2x-5\right)\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x+3}{5-x}\)
\(=\frac{5}{x-5}-\frac{x+3}{x-5}\)
\(=\frac{5-x-3}{x-5}\)
\(=\frac{-x+2}{x-5}\)
\(=-\frac{x-2}{x-5}\)
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
a)\(\frac{-5}{6}\).\(\frac{120}{25}\)<x<\(\frac{-7}{15}\).\(\frac{9}{14}\)
-4 <x<\(\frac{-3}{10}\)
\(\frac{-40}{10}\)< x <\(\frac{-3}{10}\)=>x E {-39:-38:-37:.....:-4}
b)\(\left(\frac{-5}{3}\right)^3\)<x<\(\frac{-24}{35}.\frac{-5}{6}\)
\(\frac{-875}{189}< x< \frac{108}{189}\)
=> x E {\(\frac{-874}{189},\frac{-873}{189},......,\frac{107}{189}\)}
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x-x=-\frac{2}{3}\)
\(x=\frac{-2}{3}+\frac{5}{6}\)
\(x=\frac{-4}{6}+\frac{5}{6}\)
\(x=\frac{1}{6}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x=x-\frac{2}{3}\)
\(\Rightarrow x+x-\frac{5}{6}=x-\frac{2}{3}\Rightarrow x+x-x=-\frac{2}{3}+\frac{5}{6}\)
\(\Rightarrow x=\frac{1}{6}\Rightarrow\)x ko tồn tại
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
\(\Leftrightarrow\hept{\begin{cases}x^2=25\\-5=x\end{cases}}\)
\(\Rightarrow x=\sqrt{25}=-5\)ko thể =5 vì -5=x
25/5 -x*2/2