K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\hept{\begin{cases}x^2=25\\-5=x\end{cases}}\)

\(\Rightarrow x=\sqrt{25}=-5\)ko thể =5 vì -5=x

1 tháng 2 2017

25/5 -x*2/2

18 tháng 2 2019

a)ta có xy=7*9=7*3*3

vậy x =9;21 , y=7;3

b) xy=-2*5

mà x<0<y

nên x=-2 ,y=5

c)x-y=5 hay x=y+5

\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)

18 tháng 2 2019

câu c mk nhầm đề sr bạn nha

\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)

14 tháng 12 2015

a) Điều kiện xác định của phân thức A là x#+-5
\(A=\frac{2\left(x+15\right)}{x^2-25}-\frac{x+3}{x+5}+\frac{x}{x-5} \)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{x+3}{x+5}+\frac{x}{x-5}\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+3\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{x\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-\left(x^2-5x+3x-15\right)+x^2+5x}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-x^2+5x+3x-15+x^2+5x}{\left(x+5\right)\left(x-5\right)}=\frac{15x+15}{\left(x+5\right)\left(x-5\right)}=\frac{15\left(x+1\right)}{\left(x+5\right)\left(x-5\right)}\)

tick đúng nha, ý b tí mình giải nhé

4 tháng 1 2017

\(A=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}\)

\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)

\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x+5\right)\left(x-5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)

\(=\left(\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right).\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)

\(=\left[\frac{\left(x-x+5\right)\left(x+x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right].\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)

\(=\frac{5x.\left(2x-5\right)\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x+3}{5-x}\)

\(=\frac{5}{x-5}-\frac{x+3}{x-5}\)

\(=\frac{5-x-3}{x-5}\)

\(=\frac{-x+2}{x-5}\)

\(=-\frac{x-2}{x-5}\)

4 tháng 1 2017

bn ơi bn hiểu sai đề bài rồi bn ạ

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2

28 tháng 7 2016

a)\(\frac{-5}{6}\).\(\frac{120}{25}\)<x<\(\frac{-7}{15}\).\(\frac{9}{14}\)

       -4                 <x<\(\frac{-3}{10}\)

\(\frac{-40}{10}\)<      x   <\(\frac{-3}{10}\)=>x E {-39:-38:-37:.....:-4}

b)\(\left(\frac{-5}{3}\right)^3\)<x<\(\frac{-24}{35}.\frac{-5}{6}\)

\(\frac{-875}{189}< x< \frac{108}{189}\)

=> x  E {\(\frac{-874}{189},\frac{-873}{189},......,\frac{107}{189}\)}

10 tháng 2 2018

\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

\(x-\frac{5}{6}+x-x=-\frac{2}{3}\)

\(x=\frac{-2}{3}+\frac{5}{6}\)

\(x=\frac{-4}{6}+\frac{5}{6}\)

\(x=\frac{1}{6}\)

10 tháng 2 2018

\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

\(x-\frac{5}{6}+x=x-\frac{2}{3}\)

\(\Rightarrow x+x-\frac{5}{6}=x-\frac{2}{3}\Rightarrow x+x-x=-\frac{2}{3}+\frac{5}{6}\)

\(\Rightarrow x=\frac{1}{6}\Rightarrow\)x ko tồn tại

10 tháng 12 2020

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }