Với giá trị nào của x thì
a) Giá trị của phân thức A= -2/x+1 là số dương
b) Gt của phân thức B = -3/x+2 là số âm
c) GT của pt C = x-3/ x-4 là số dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để x là số dương thì -4n+3>0
hay \(n< \dfrac{3}{4}\)
b: Để x là số âm thì -4n+3<0
hay \(n>\dfrac{3}{4}\)
a: Để x là số dương thì -4n>0
hay n<0
b: Để x là số âm thì -4n<0
hay n>0
c: Để x=0 thì -4n=0
hay n=0
\(1,\\ b,=\left(x-6\right)\left(x+6\right)\\ 3,\\ x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)
=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)
=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)
=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)
b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)
\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)
\(\Leftrightarrow\frac{x-3}{x-2}>0\)
\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)
\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)
Vậy ...
phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)
\(\dfrac{3x+3}{x^2-1}=-2\)
=> 3x + 3 = -2x2 + 2
=> 2x2 + 3x + 1 = 0
=> (2x+1)(x+1) = 0
=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)
Vậy, để phân thức có giá trị bằng –2 thì x = -1/2.
\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) (x khác -1 và x khác 1)
= \(\dfrac{3}{x-1}\)
=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1
=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)
=> x ∈\(\left\{-2;0;2;4\right\}\)
Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).
a , Giá trị của phân thức \(\frac{-2}{x+1}\)dương khi : \(x+1\)là số âm . hay : \(x+1\)< \(0\)\(\Leftrightarrow\)\(x\)<\(-1\)
Vậy với x< -1 thì giá trị của phân thức : \(\frac{-2}{x+1}\) là số dương.
b, Giá trị của phân thức \(\frac{-3}{x+2}\)âm khi x+2 là số dương .hay : x+2 > 0 <=> x > -2.
Vậy với x > -2 thì giá trị phân thức \(\frac{-3}{x+2}\)là số âm.
c. Trường hợp 1 : để phân thức \(\frac{x-3}{x-4}\)là số dương khi : x-3 > 0 và x-4 > 0 hay : x> 3 và x> 4
Trường hợp 2 : Để phân thức \(\frac{x-3}{x-4}\)là số dương thì x-3 < 0 và x-4 < 0 hay : x < 3 và x < 4.
Vậy với x > 4 hoặc x < 3 thì phân thức \(\frac{x-3}{x-4}\) là số dương.