Cho A= 3n-5/n+4 . Tìm n thuộc Z để có giá trị nguyên.
Trình bày chi tiết. Arigato
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\frac{3n-5}{n+4}=3-\frac{17}{n+4}\) là số nguyên khi \(\frac{17}{n+4}\text{ nguyên hay }n+4\text{ là ước của 17 }\)
\(\Rightarrow n+4\in\left\{\pm1,\pm17\right\}\Rightarrow n\in\left\{-21,-5,-3,13\right\}\)
Trả lời:
Ta có : A = \(\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3+\frac{17}{n+4}\)
Để A = \(\frac{3n-5}{n+4}\)là số nguyên thì \(\frac{17}{n+4}\)cũng là số nguyên
=> \(17⋮n+4\)hay \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy \(x\in\left\{-3;-5;13;-21\right\}\)thì A = \(\frac{3n-5}{n+4}\)là số nguyên.
để \(A\in Z\Rightarrow3n-5⋮n+4\left(n\in Z;n\ne-4\right)\left(1\right)\)
ta có \(n+4⋮n+4\)
\(\Rightarrow3\left(n+4\right)⋮n+4\)
\(\Rightarrow3n+12⋮n+4\left(2\right)\)
từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow3n+12-\left(3n-5\right)⋮n+4\)
\(\Rightarrow3n+12-3n+5⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\in\text{Ư}_{\left(17\right)}=\text{ }\left\{1;-1;17;-17\right\}\)
lập bảng giá trị
\(n+4\) | \(1\) | \(-1\) | \(17\) | \(-17\) |
\(n\) | \(-3\) | \(-5\) | \(13\) | \(-21\) |
vậy................
Để A có giá trị nguyên thì 3n - 5 \(⋮\)n + 4.
Ta có : 3n - 5 = 3(n + 4) - 17
Do n + 4 \(⋮\)n + 4
Để 3(n + 4) - 17 \(⋮\)n + 4 thì 17 \(⋮\)n + 4 => n + 4 \(\in\)Ư(17) = {1, -1, 17, -17}
Với : n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 17 => n = 13
n + 4 = -17 => n = -21
Vậy n = {-3; -5; 13; -21} thì A có giá trị nguyên.
\(\frac{3n-5}{n+4}=\frac{3.\left(n+4\right)-17}{n+4}=\frac{3.\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\)
Để \(3-\frac{7}{n+4}\) là số nguyên <=> \(\frac{17}{n+4}\)
=> n + 4 ∈ Ư ( 17 ) => Ư ( 17 ) = { ± 1 ; ± 17 }
=> n ∈ { - 5 ; - 3 ; - 21 ; 13 }
để A có giá trị nguyên thì 3n-5 chia hết cho n+4 ( điều kiện: n khác -4)
ta có 3n - 5 = 3(n+4) -17
vì 3(n+4) chia hết cho n+4 nên để 3(n+4) - 17 chia hết cho n+4 thì 17 chia hết cho n+4
=> n+4 là ước của 17
ta có ư(17) = -1;-17;1;17
nếu n+4=-1 thì n=-5 (thoả mãn)
nếu n+4 = -17 thì n=-21(thoả mãn)
nếu n+4 = 1 thì n= -3(thoả mãn)
nếu n+4 = 17 thì n= 16(thoả mãn)
Để A nguyên thì:
3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
(nếu là 3n - 5/n +4 )
Ta có 3n+4 luôn thuộc Z với mọi n thuộc Z
=>5/n thuộc Z <=>n={-5,-1,1,5}
Câu 2:(nếu là (3n-5)/(n+4) )
A=(3n-5)/(n+4)=(3n+12-12-5)/(n+4)
=3-17/(n+4)
3 thuộc Z, A thuộc Z
=> 17/(n+4) thuộc Z <=>n={--21,-5,-3,13}
Có gì thắc mắc hỏi qua nick yh gaconti14
Chú ý dành cho các bác ở trên : n thuộc N chứ không phải thuộc Z
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Ta có:\(A\in Z\Leftrightarrow\frac{3n-5}{n+4}\in Z\Leftrightarrow\frac{3n+12-17}{n+4}\in Z\Leftrightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Leftrightarrow3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{-17}{n+4}\in Z\)
\(\Leftrightarrow n+4\inƯ17\Leftrightarrow n+4\in\left\{-1;-17;1;17\right\}\)
Thay \(n+4=-1\Rightarrow n=-5\) (TM)
\(n+4=-17\Rightarrow n=-21\) (TM)
\(n+4=1\Rightarrow n=-3\) (TM)
\(n+4=17\Rightarrow n=13\) (TM)
Vậy \(n\in\left\{-21;-5;-3;13\right\}\) thì \(A\in Z\)
Ta có:
\(A=\dfrac{3n+3}{n-4}=\dfrac{3n-12+15}{n-4}=\dfrac{3\left(n-4\right)+15}{n-4}\)
\(=\dfrac{3\left(n-4\right)}{n-4}+\dfrac{15}{n-4}=3+\dfrac{15}{n-4}\)
Để A nguyên thì
15 ⋮ n - 4
⇒ n - 4 ∈ Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
⇒ n ∈ {5; 3; 7; 1; 9; -1; 19; -11}
Vậy ...
A là số nguyên <=> 3n-5 chia hết cho n+4
Có : 3n+5 = 3n-12+17=3(n-4)=17
=> 3(n-4)+17 chia hết cho n-4
mà 3(n-4) chia hết cho n-4=> 17 chia hết cho n-4
=> n-4 thuộc Ư(17)
=> n-4 thuộc {1;-1;17;-17}
=> n thuộc {5;3;21;-13}
Vậy n thuộc {5;3;21;-13} thì A nhận giá trị nguyên
k cho mình nha!!!
Để A có giá trị nguyên thì 3n-5 chia hết cho n+4
=> 3n+12-17 chia hết cho n+4
=> 17 chia hết cho n+4
=> n+4 thuộc Ư(17)={-1;1;-17;17}
=> n thuộc {-5;-3;-21;13}
Đề A thuộc Z
=> 3n - 5 chia hết cho n + 4
Ta có :
3n - 5 chia hết cho n + 4
3n + 12 - 12 - 5 chia hết cho n + 4
3.(n + 4) - 17 chia hết cho n + 4
=> -17 chia hết cho n + 4
=> n + 4 thuộc Ư(-17) = {1 ; -1 ; 17 ; -17}
Ta có bảng sau :