cho a là một só nguyên.Chứng minh rằng /a/<5tuwowng đương -5<a<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: nếu số đối của a=a thì a<5
TH2: nếu số đối của a=-a thì -a<5
a>-5
Xét |a|\(< 5\)=> \(a^2< 25\)=>a2-25<0 => ( a-5)(a+5) <0 => a-5 và a+5 trái dấu nhau
mà a+5>a-5
=> a+5>0 và a-5<0
=> a>-5 và a<5 => -5<a<5
vì | a | \(\ge\)0 mà | a | < 5 nên 0 \(\le\)a < 5
Lập bảng ta có :
|a| | 0 | 1 | 2 | 3 | 4 |
a | 0 | \(\orbr{\begin{cases}1\\-1\end{cases}}\) | \(\orbr{\begin{cases}2\\-2\end{cases}}\) | \(\orbr{\begin{cases}3\\-3\end{cases}}\) | \(\orbr{\begin{cases}4\\-4\end{cases}}\) |
\(\Rightarrow\)a \(\in\){ -4 ; -3 ; ... ; 3 ; 4
\(\Leftrightarrow\)-5 < a < 5
Lỡ sai đừng trách nha:
Nếu a là số dương thì số liền sau của a là a+1. a là số nguyên dương, 1 cũng là số nguyên dương=> a+1 cũng là 1 số nguyên dương.
Vậy nếu a là số nguyên dương thì số liền sau của a cũng là 1 số nguyên dương
vì a <5 và >-5 nên ta có a={-4;-3;-2;-1;0;1;2;3;4}<=>lal={4;3;2;1;0} vì vậy ta có kết luận lal lun lun bè hơn 5
Giả sử \(\left(a-6b\right)⋮b\)
Ta có: \(\hept{\begin{cases}\left(2a+b\right)⋮13\left(1\right)\\\left(5a-4b\right)⋮13\Rightarrow\left(10a-8b\right)⋮13\left(2\right)\\\left(a-6b\right)⋮13\left(3\right)\end{cases}}\)
Cộng (1),(2),(3) vế với vế:
\(\left[\left(2a+b\right)+\left(10a-8b\right)+\left(a-6b\right)\right]⋮13\)
\(\Rightarrow\left(2a+b+10a-8b+a-6b\right)⋮13\)
\(\Rightarrow\left[\left(2a+10a+a\right)+\left(b-8b-6b\right)\right]⋮13\)
\(\Rightarrow\left(13a-13b\right)⋮13\)
\(\Rightarrow13\left(a-b\right)⋮13\)(đúng)
=> Giả sử đúng
Vậy...
Ta có số : \(a\) \(\left(a\inℤ\right)\)
\(a)\) a nguyên dương suy ra \(a>0\)
Suy ra liền sau của a : \(a+1>0+1=1\) là một số dương
Vậy....
\(b)\) \(a< 0\)
Suy ra liền sau của a : \(a-1< 0-1=-1\) là một số âm
Vậy....
\(c)\) Từ câu a và b tự kết luận
Chúc bạn học tốt ~
cái gì thế ?