K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a^2 +b^2 +c^2 =1 chứ không phải là nhỏ hơn 0 . mình giải như sau 
a,b,c>0 và a^2 + b^2 + c^2 =1 
=>a^2 <1 ;b^2 <1 ; c^2 <1 

a/(b^2+c^2) + b/(a^2+c^2) + c/(b^2+a^2) >= (3√3)/2 (a^2 + b^2 + c^2) 
<=> a/(1-a^2) + b/(1-b^2)+c/(1-c^2) >= (3√3)/2 (a^2 + b^2 + c^2) 
ta cần chứng minh 
a/(1-a^2) >= (3√3)/2 a^2 
ta có: 

a/(1-a^2) >= (3√3)/2 a^2 <=> 1/(1-a^2) >= (3√3)/2 .a 
<=> 1 >= (3√3)/2 .a(1-a^2) 
<=> 2/(3√3) >= a(1-a^2) 
<=> 4/27 >= a^2.(1-a^2)(1-a^2) (**) 
áp dụng bđt co sy cho 3 số dương 2a^2 ; 1-a^2 ; 1-a^2 
ta có: 
2a^2.(1-a^2)(1-a^2) <= (2a^2 + 1-a^2 + 1-a^2)^3/27 = 8/27 
=> a^2.(1-a^2)(1-a^2) <= 4/27 
=> (**) luôn đúng 
=> 
a/(1-a^2) >= (3√3)/2 a^2 
tương tự ta có: 
b/(1-b^2) >= (3√3)/2 . b^2 
c/(1-c^2) >= (3√3)/2 .c^2 
=> a/(1-a^2) + b/(1-b^2)+c/(1-c^2) >= (3√3)/2 (a^2 + b^2 + c^2) = (3√3)/2 

30 tháng 1 2017

cần c/m bđt : a/b+c +b/a+c + c/a+b >= 3/2 với a,b,c>0 (nesbit) (*)

<=>(a/b+c + 1 ) + (b/a+c + 1) + (c/a+b + 1) >= 3/2 + 1 + 1 + 1

<=>(a+b+c)/b+c + (a+b+c)/a+c + (a+b+c)/a+b >= 9/2

<=> 2(a+b+c)(1/a+b + 1/b+c + 1/a+c) >= 9  

<=>[(a+b)+(b+c)+(c+a)](1/a+b + 1/b+c + 1/a+c) >= 9 (1)

Đặt x=a+b;y=b+c;z=a+c 

(1) <=> (x+y+z)(1/x+1/y+1/z) >= 9 

<=>(x/y+y/x)+(y/z+z/y)+(z/x+x/z) >= 6

<=>(x/y+y/x-2)+(y/z+z/y-2)+(z/x+x/z-2) >= 0

<=>(x-y)2/xy+(y-z)2/yz+(z-x)2/zx >= 0(luôn đúng)

Vậy bdt (*) là đúng

trở lại bài toán : a2/b+c + b2/a+c + c2/a+b >= (a+b+c)/2

<=>(a2/b+c + a)+(b2/a+c + b)+(c2/a+b + c) >= 3/2(a+b+c)

<=>a(a+b+c)/b+c + b(a+b+c)/a+c + c(a+b+c)/a+b >= 3/2(a+b+c)

<=>a/b+c + b/a+c + c/a+b >= 3/2  (bđt (*))

Vậy có đpcm

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

28 tháng 2 2016

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

14 tháng 1 2018

 Câu trả lời hay nhất:  áp dụng BĐT bunhiacopxki 
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 1/3 

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3

tk mk nha $_$