K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Vì AB>AH>BH nên ta có:

AH^2+BH^2 = 4^2+3^2=16+9=25

AB^2=5^2=25

=> Ah^2+BH^2=Ab^2

=> tam giác ABh vuông tại H ( theo định lý pytago đảo)

có CH = BC - BH = 7 -3  =4

vì góc H vuông nên tam giác AHC vuông tại H mà AH = HC => tam giác AHC vuông tại H

Xét tam giác AHC vuông tại H ta có:

2.AH^2=AC^2=> 2.4^2=AC^2=> AC^2=\(\sqrt{32}\)

mà tam giác AHC vuông tại H => góc C = 45 dđộ

k nhé

8 tháng 8 2017

Vì AB < AC ⇒ BH < HC (quan hệ giữa đường xiên và hình chiếu). Chọn A

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

28 tháng 4 2019

AB = 3 => AB^2 = 3^3 = 9

AC = 4 => AC^2 = 4^2 = 16

=> AB^2 + AC^2 = 9 + 16 = 25

BC = 5 => BC^2 = 5^2 = 25

=> AB^2 + AC^2 = BC^2

=> tam giác ABC vuông tại  A (đl PTG đảo)

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ

góc DAH+góc BDA=90độ

góc BAD=góc BDA

=>góc MAD=góc HAD

Xét ΔAHD và ΔAMD có

AH=AM

góc HAD=góc MAD

AD chung

=>ΔAHD=ΔAMD

=>góc AMD=90 độ

Xét ΔAMN vuông tại M và ΔAHC vuông tại H có

AM=AH

góc MAN chung

=>ΔAMN=ΔAHC

=>AN=AC

=>ΔANC cân tại A

7 tháng 2 2016

Hình bé tự vẽ nhá.

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH2 +BH2 =AB2

        AH= AB2 - BH2

        AH2 = 5- 32

=>.     AH2 = 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH2 + HC2 = AC2

4+ 52 = AC2

=> AC2 = 41

AC = \(\sqrt{41}\)

7 tháng 2 2016

Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;

AH2+BH2=AB2 

=>AH2=AB2-BH2=52-32

=>AH2=25-9=16

=>AH=+(-)4

mà AH>0 =>AH=4 cm

Lại có;

BH+HC=BC 

=>HC=BC-BH=8-3

=>HC=5 cm

Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:

AC2=AH2+HC2

=>AC2=42+52=16+25

=>AC2=41

=>AC=+(-)\(\sqrt{41}\)

Mà AC >0 =>AC=\(\sqrt{41}\)cm

Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm

3 tháng 2 2018

- Ta có tam giác ABC vuông tại H

Áp dụng định lí Pi-ta-go có:

\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)

Tương tự ta có:...(bn tự làm)

Tam giác AHC vuông tại H

=> cũng như trên

3 tháng 2 2018

Tự vẽ nhé

 Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:

   AH\(^2\)+ BH\(^2\)= AB\(^2\)

    AH\(^2\)\(AB^2-BH^2\)

   \(AH^2=5^2-3^2\)

\(=>AH^2=16\)

\(AH=4cm\)

Theo đề, ta có: AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

 HC = 8  - 3

 HC=5 cm

Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:

      \(AH^2+HC^2=AC^2\)

        \(4^2+5^2=AC^2\)

=>   \(AC^2=41\)

=> \(AC=\sqrt{41}\)

a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

BC=15^2/9=25(cm)

\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

c: CE/CB=CF/CA

góc C chung

=>ΔCEF đồng dạng với ΔCBA

=>góc CFE=góc CAB=90 độ

=>ΔCEF vuông tại F

d: CE/CB=CF/CA

=>CE*CA=CF*CB

24 tháng 4 2016

A B C H D F

24 tháng 3 2022
Các bn làm ơn giải hộ mik câu a,b mik đang cần gấp