CHo tam giác ABC có số đo các góc A , B , C tỉ lệ với 3 , 2 , 1
a, Tính số đo các góc của tam giác ABC
b, Lấy D là trung điểm của AC . Kẻ qua D dg thẳng vg với AC , dg thẳng naft cắt BC tại M
Cm tam giác ABM là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
Khoan vẽ hình bài này bạn có thể làm xong câu a rồi quay lên trên vẽ hình cho dễ
a)Gọi số đo 3 góc A;B;C của tam giác ABC lần lượt là: x;y;z
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\) và x+y+z=180 (tổng 3 góc của tam giác)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
Suy ra: \(\frac{x}{3}=30\Rightarrow x=90;\frac{y}{2}=30\Rightarrow y=60;z=30\)
Vậy số đo 2 góc A;B;C lần lượt là : 90o;60o;30o
Câu b đợi mik nghĩ tí
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
a)
Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ
Xét trong tam giác ABC. Ta có:
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)
\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)
=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)
b)
MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)
AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)
=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)
=> \(\widehat{MCB}=\widehat{MKB}\)
b) Ta có : KB vuông góc với BM
lấy E đối xứng với M qua B
=> K B là đường trung trực của ME
Để chứng minh AE=AM
Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c