\(choD=2^{100}-2^{99}-2^{98}-...-2^2-1\)
tính D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
\(D=2^{100}-2^{99}-2^{98}-....-2^2-2-1\)
\(2D=2^{101}-2^{100}-...-2^2-2\)
\(2D-D=\left(2^{101}-...-2\right)-\left(2^{100}-...-1\right)\)
\(D=2^{101}-2^{100}-...-2-2^{100}+2^{99}+...+1\)
\(D=2^{101}-2^{100}.2+1\)
\(\Rightarrow D=1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)\(1\)
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Xét : \(2^{99}+2^{98}+2^{97}+...+2+1=B\)
\(2B=2^{100}+2^{99}+2^{98}+...+2^2+2\)
\(2B-B=\left(2^{100}+2^{98}+...+2^2+2\right)-\left(2^{99}+2^{98}+...+2+1\right)\)
\(B=2^{100}-1\)
\(\Rightarrow D=2^{100}-\left(2^{100}-1\right)\)
\(=2^{100}-2^{100}+1=1\)
Answer:
`B=1+3-5-7+9+11-....-397-399`
`=(1+3-5-7)+(9+11-13-15)+...+(393+395-397-399)`
`=(-8)+(-8)+...+(-8)`
`=(-8).100`
`=-800`
`C=1-2-3+4+5-6-7+...+97-98-99+100`
`=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)`
`=0+0+...+0`
`=0`
\(D=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Rightarrow2D=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Rightarrow2D-D=\left(2^{101}-2^{100}-...-2^2-2\right)-\left(2^{100}-2^{99}-...-2-1\right)\)
\(\Rightarrow D=2^{101}-2^{100}-2^{100}+1\)
\(\Rightarrow D=2^{101}-2^{101}+1\)
\(\Rightarrow D=1\)
Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là: ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
2D= 2101 - 299 - 298 - ...-2
2D-D = [ 2101- 299- 298 - ... -2 ] - [ 2100 - 299 -....-1 ]
D= 2101 - 2100 - 1