A=2+22+23+24+...+260
B=3+33+35+...+31991
Giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2^3-5^3:5^2+12\cdot2^2\)
\(=8-5+48\)
\(=51\)
b: \(5\cdot\left[\left(85-35:7\right):8+90\right]-5\)
\(=5\cdot\left[10+90\right]-5\)
=495
a: 23−53:52+12⋅2223−53:52+12⋅22
=8−5+48=8−5+48
=51=51
b: 5⋅[(85−35:7):8+90]−55⋅[(85−35:7):8+90]−5
=5⋅[10+90]−5=5⋅[10+90]−5
=495
a) 4 ; 8 ; 16 ; 32 ; 64
b) 9 ; 27 ; 81 ; 243
c) 16 ; 64 ; 256
d) 25 ; 125
Chúc bạn học tốt!! ^^
a) \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
b) \(3^2=3\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c) \(4^2=16\)
\(4^3=64\)
\(4^4=256\)
d) \(5^2=25\)
\(5^3=125\)
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37
=(1+37)x37:2
=703
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
1 ) A = 2 + 22 + 23 + 24 + .... + 260
2A = 2 ( 2 + 22 + 23 + 24 + .... + 260 )
= 22 + 23 + 24 + 25 + .... + 261
2A - A = ( 22 + 23 + 24 + 25 + .... + 261 ) - ( 2 + 22 + 23 + 24 + .... + 260 )
A = 261 - 2
2 ) B = 3 + 33 + 35 + ... + 31991
32B = 32 ( 3 + 33 + 35 + ... + 31991 )
= 33 + 35 + 37 + .... + 31993
32B - B = ( 33 + 35 + 37 + .... + 31993 ) - ( 3 + 33 + 35 + ... + 31991 )
8B = 31993 - 3
\(\Rightarrow B=\frac{3^{1993}-3}{8}=\frac{3\left(3^{1992}-1\right)}{8}=\frac{3}{8}\left(3^{1992}-1\right)\)