K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

a)( 100 -  1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... * ( 100 -50^2 )=( 100 -  1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... *(100-10^2)....* ( 100 -50^2 )=( 100 -  1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... *(0)....* ( 100 -50^2 )=0

b)1^0 + 1^2 + 1^3+ 1^4 +..........+1^99=1+1+1+1+....+1+1+1(có 100 số 1)=100x1=100

31 tháng 5 2017

a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :

A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :

A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)

b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :

A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :

A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)

31 tháng 5 2017

bn là râu trắng à

2 tháng 2 2017

Bạn iu à cái này áp dụng quy tắc tính tổng á

13 tháng 2 2017

ukm. thanks bn

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

7 tháng 7 2017

\(c,\)\(\left(x-1\right)+\left(x-2\right)+....+\left(x-100\right)=50\)

\(\left(x+x+...+x\right)-\left(1+2+...+100\right)=50\)

\(100x-5050=50\)

\(100x=50+5050\)

\(100x=5100\)

\(\Rightarrow x=\frac{5100}{100}=51\)

7 tháng 7 2017

\(a,\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)

\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)

\(100x+5050=5750\)

\(100x=5750-5050\)

\(100x=700\)

\(\Rightarrow x=7\)

\(b,x+\left(1+2+3+...+50\right)=2000\)

 \(x+\frac{\left[1+50\right]\cdot\left[\left(50-1\right)\div1+1\right]}{2}=2000\)

\(x+1275=2000\)

\(\Rightarrow x=2000-1275=725\)

10 tháng 5 2020

Hình như câu này chỉ sử dụng câu lệnh for... to... do hay sao thoii í cậu. Thầy tớ gợi í thế

a)

uses crt;
var b:real;

i:integer;
begin
clrscr;
i:=10;
b:=1;
while i<=30 do
begin
b:=b*i;
i:=i+1;
end;
writeln('B=',b:0:0);

readln;

end.

b) uses crt;
var c,j:integer;
begin
clrscr;
j:=50;
c:=0;
while j<=100 do
begin
c:=c+j;
j:=j+1;
end;
writeln('C=',c);

readln;

end.

c) uses crt;

var i,d:integer;

begin

clrscr;

i:=-50;

d:=0;

while i<=50 do

begin

d:=d+i;

inc(i);

end;

writeln('D=',d);

readln;

end.

d) uses crt;

var n,i:integer;

e:real;

begin

clrscr;

write('n='); readln(n);

e:=0;

for i:=1 to n do

e:=e+1/(i*(i+2));

writeln('E=',e:4:2);

readln;

end.

4 tháng 7 2023

A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861

GH
4 tháng 7 2023

a) A =1 + 2 + 3 + 4 + … + 50

Số số hạng của dãy số trên là:

(50 - 1) : 1 + 1 = 50 (số số hạng)

  A =(1+ 50) . 50 : 2

      = 51 . 50 : 2

      = 2550 : 2

      = 1275

b) B = 2 + 4 + 6 + 8 + ... + 100

Số số hạng của dãy số trên là:

(100 - 2) : 2 + 1 = 50 (số hạng)

Có số cặp là:

50 : 2 = 25 (cặp)

Tổng của 1 cặp là:

100 + 2 = 102

Tổng của dãy số là:

25 .102 = 2550

c) C = 1 + 3 + 5 + 7 + … + 99

Số số hạng của dãy trên là:

(99 - 1) : 2 + 1 = 50 (số số hạng)

C = (1 + 99) . 50 : 2

  = 100 . 50 : 2

  = 5000 : 2

  = 2500

d) D = 2 + 5 + 8 + 11 + … + 98

Số số hạng của dãy trên là:

 (98 - 2) : 3 + 1 = 33 (số số hạng)

=> Dãy trên có 16 cặp

D = (95 + 2) .16 + 98

   = 97 . 16 + 98

   = 1552 +98

   = 1650