K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2014

Tổng các góc của tứ giác = 360o. Bốn góc bằng nhau => Mỗi góc bằng 360 : 4 = 90o

2 tháng 9 2020

1. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí )

mà 4 góc đó bằng nhau 

=> ^A = ^B = ^C = ^D = 3600/4 = 900

2. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí ) (1)

mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5

=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)

Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+​​\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)

=> ^A = 300

     ^B = 300.2 = 600

     ^C = 300.4 = 1200

     ^D = 300.5 = 1500

2 tháng 9 2020

Xét tứ giác ABCD có các góc bằng nhau

=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)

Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)

\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)

Bài 2: 

Xét tứ giác ABCD 

=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5

\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Theo tính chất dãy tỉ số bằng nhau

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)

Do đó 

\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)

\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)

\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)

\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)

Vậy.........

17 tháng 9 2015

A B C D E F 1 1 2 2

Xét Tứ giác ABCD có: góc A + B + C + D = 360o =>  100o + 120o + (C + D) = 360=> góc C + D = 140o

DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700

Xét tam giác DEC có: góc D+ góc E + góc C1 = 180=> góc DEC = 180- (D1 + C1) = 180- 70= 110o

Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900

=> góc D= 90- D1

Vì tia Cy là p/g ngoài  của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o

=> góc C2 = 90o - C1

Xét tam giác CDF có: góc C+ góc CFD + góc D2 = 180o

=> góc CFD + (90- D1 + 90- C1) = 180o => góc CFD + 180o - (D1 + C1) = 180=> góc CFD = D1 + C1 = 90o

 

a: Gọi giao của hai tia phân giác góc A và góc D là I

góc IAD+góc IDA

=1/2(góc A+góc D)

=1/2*180=90 độ

=>góc AID=90 độ

=>ĐPCM

b: 

Gọi giao của hai tia phân giác góc A và góc D là I

Theo đề, ta có: góc AID=90 độ

=>góc IAD+góc IDA=90 độ

=>góc A+góc D=180 độ

=>AB//CD

a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.

Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆBMI^=MEB^+MBE^=EIF^+MFI^ ( góc ngoài tam giác ) EIFˆ=MEBˆ+MBEˆMFIˆ (1)→EIF^=MEB^+MBE^−MFI^ (1)

Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆDNI^=NFD^+NDF^=EIF^+NEI^ ( góc ngoài tam giác ) EIFˆ=NFDˆ+NDFˆNEIˆ (2)→EIF^=NFD^+NDF^−NEI^ (2)

Do EM là phân giác AEBˆMEBˆ=NEIˆAEB^→MEB^=NEI^

Do FN là phân giác 

a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.

Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆBMI^=MEB^+MBE^=EIF^+MFI^ ( góc ngoài tam giác ) EIFˆ=MEBˆ+MBEˆMFIˆ (1)→EIF^=MEB^+MBE^−MFI^ (1)

Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆDNI^=NFD^+NDF^=EIF^+NEI^ ( góc ngoài tam giác ) EIFˆ=NFDˆ+NDFˆNEIˆ (2)→EIF^=NFD^+NDF^−NEI^ (2)

Do EM là phân giác AEBˆMEBˆ=NEIˆAEB^→MEB^=NEI^

Do FN là phân giác AF
2 tháng 8 2015

Cái này hình như bằng 105 độ 

29 tháng 6 2016

mink chưa bt cách làm nhưng hình như kết quả là = 65 độ