tìm n biết
a, (2 x n - 5)2=16
b, (3 x n -2)5=-243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
a) \(2^x\cdot4=16\)
\(\Rightarrow2^x=16:4\)
\(\Rightarrow2^x=4\)
\(\Rightarrow2^x=2^2\)
\(\Rightarrow x=2\)
b) \(3^x\cdot3=243\)
\(\Rightarrow3^x=243:3\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Trả lời:
H.(7x-11)3 =25.52 +200
=(7x-11)3 =32.25 +200 =(7x-11)3 =800 +200
=(7x-11)3 =1000 =(7x-11)3 = 103
= 7x-11 = 10 = 7x = 10 + 11
= 7x = 21 = x = 21:7
= x = 3
I.3x +25 = 26.22+2.30
=3x +25 = 26.4 +2.1 =3x +25 = 106
=3x = 106-25 =3x = 81
=3x = 34 => x =4
K.27.3x= 243
= 3x =243:27
= 3x = 9
= 3x = 32
=> x = 2
Mấy câu khác cứ thế làm nha
Bài 1 :
\(a)\)\(2^2+4.2^n=5.2^n\)
\(\Leftrightarrow\)\(5.2^n-4.2^n=2^2\)
\(\Leftrightarrow\)\(2^n=2^2\)
\(\Leftrightarrow\)\(n=2\)
Vậy \(n=2\)
\(b)\)\(9< 3^n< 243\)
\(\Leftrightarrow\)\(3^2< 3^n< 3^5\)
\(\Leftrightarrow\)\(2< n< 5\)
\(\Rightarrow\)\(n\in\left\{3;4\right\}\)
Vậy \(n=3\) hoặc \(n=4\)
\(c)\)\(5< 5^n< 625\)
\(\Leftrightarrow\)\(5^1< 5^n< 5^4\)
\(\Leftrightarrow\)\(1< n< 4\)
\(\Rightarrow\)\(n\in\left\{2;3\right\}\)
Vậy \(n=2\) hoặc \(n=3\)
Chúc bạn học tốt ~
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
a) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\left(-3\right)^n=\dfrac{\left(-3\right)^4}{\left(-3\right)^5}=\left(-3\right)^{-1}\)
n = -1
Vậy n = -1
b) \(\dfrac{25}{5^n}=5\)
\(\dfrac{5^2}{5^n}=5^1\)
\(5^n=\dfrac{5^2}{5^1}=5^1\)
n = 1
Vậy n = 1
c) \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(2^{n-1}+4\cdot2^{n-1}\cdot2=9\cdot2^5\)
\(2^{n-1}+8\cdot2^{n-1}=9\cdot2^5\)
\(\left(8+1\right)\cdot2^{n-1}=9\cdot2^5\)
\(9\cdot2^{n-1}=9\cdot2^5\)
\(2^{n-1}=2^5\cdot\dfrac{9}{9}=2^5\)
n - 1 = 5
n = 5 + 1 = 6
Vậy n = 6
a) 81/(-3)ⁿ = -243
(-3)ⁿ = 81 : (-243)
(-3)ⁿ = -1/3
n = -1
b) 25/5ⁿ = 5
5ⁿ = 25 : 5
5ⁿ = 5
n = 1
c) 1/2 . 2ⁿ + 4 . 2ⁿ = 9 . 2⁵
2ⁿ . (1/2 + 4) = 9 . 32
2ⁿ . 9/2 = 288
2ⁿ = 288 : 9/2
2ⁿ = 64
2ⁿ = 2⁶
n = 6
3:
a: 3^x*3=243
=>3^x=81
=>x=4
b; 2^x*16^2=1024
=>2^x=4
=>x=2
c: 64*4^x=16^8
=>4^x=4^16/4^3=4^13
=>x=13
d: 2^x=16
=>2^x=2^4
=>x=4
a) \(\left(2n-5\right)^2=16\Leftrightarrow2n-5=+-4\Leftrightarrow2n=5+-4\Leftrightarrow n=\frac{5+-4}{2}\)
\(\left(3n-2\right)^5=-243\Leftrightarrow\left(3n-2\right)^5=-3^5\Leftrightarrow3n-2=-3\Leftrightarrow3n=-1\Leftrightarrow n=-\frac{1}{3}\)
a, (2n-5)2=16
<=>(2n-5)2-42=0
<=>(2n-5-4)(2n-5+4)=0
<=>(2n-9)(2n-1)=0
<=>2n-9=0 hoặc 2n-1=0
<=>n=9/2 hoặc n=1/2
b, (3n-2)5-(-3)5=0
<=>(3n-2+3)(...)=0
<=>3n-2+3=0
<=>3n=-1
<=>n=-1/3