Bài 67 (trang 36 SGK Toán 9 Tập 1)
Hãy tìm
$\sqrt[3]{512}$ ; $\sqrt[3]{-729}$ ; $\sqrt[3]{0,064}$ ; $\sqrt[3]{-0,216}$ ; $\sqrt[3]{-0,008}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 5=3√53=3√1255=533=1253
Vì 125>123⇔3√125>3√123125>123⇔1253>1233
⇔5>3√123⇔5>1233
Vậy 5>3√1235>1233.
b, Ta có :
+)53√6=3√53.6=3√125.6=3√750+)63√5=3√63.5=3√216.5=3√1080+)563=53.63=125.63=7503+)653=63.53=216.53=10803
Vì 750<1080⇔3√750<3√1080750<1080⇔7503<10803
⇔53√6<63√5⇔563<653.
Vậy 53√6<63√5563<653.
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)
#Học tốt!!!
\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)
\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)
\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)
\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)
\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)
a) \(\sqrt{\left(x-3\right)^2}\)=9
<=> |x-3|=9
x=12 hoặc x=-6
b) \(\sqrt{4x^2+4x+1}\)=6
<=> |2x+1|=6
<=> x=\(\frac{5}{2}\) hoặc x=\(-\frac{7}{2}\)
a) \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)
Vậy ...
b) \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{2}\end{cases}}\)
Vậy ...
a, \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)ĐK : \(x\ge3\)
TH1 : \(x-3=9\Leftrightarrow x=12\)
TH2 ; \(x-3=-9\Leftrightarrow x=-6\)( ktm )
b, \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)ĐK : \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\left|2x+1\right|=6\)TH1 : \(2x+1=6\Leftrightarrow x=\frac{5}{2}\)
TH2 : \(2x+1=-6\Leftrightarrow x=-\frac{7}{2}\)( ktm )
a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01
Vì VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT.
b) Sai.
Vì vế phải không có nghĩa do số âm không có căn bậc hai.
c) Đúng.
Vì: 36<39<4936<39<49 ⇔√36<√39<√49⇔36<39<49
⇔√62<√39<√72⇔62<39<72
⇔6<√39<7⇔6<39<7
Hay √39>639>6 và √39<739<7.
d) Đúng.
Xét bất phương trình đề cho:
(4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13) (1)(1)
Ta có:
16>13⇔√16>√1316>13⇔16>13
⇔√42>√13⇔42>13
⇔4>√13⇔4>13
⇔4−√13>0⇔4−13>0
Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:
(4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)
⇔2x<√3.⇔2x<3.
Vậy phép biến đổi tương đương trong câu d là đúng.
Ta có:
+ 3√512=3√83=8;5123=833=8;
+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;
+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;
+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;
+ 3√−0,008=3√(−0,2)3=−0,2.
Đáp án:
( lần lượt như trên nhé!!! Ko viết lại đề)
8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2