cho tam giác ABC vuông cân tại A . Biết BC=20 cm, 4.AB=3.AC . Tính AB,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
C1. Ta có : \(\left\{{}\begin{matrix}AB^2+AC^2=400\\4AB-3AC=0\end{matrix}\right.\)
- Giair hệ phương trình ta được : AB = 12cm.
C2 .Ta có : \(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{25}=16\)
=> AB = 12cm
C3 : - Áp dụng HTL : \(\left\{{}\begin{matrix}\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2+AC^2}\\4AB-3AC=0\end{matrix}\right.\)
- Giai hệ : AB = 12cm .
sao chứng minh được \(\Delta ABC\)cân tại \(A\) khi đề bài cho \(AB=20\)và \(AC=48\)
\(\Delta\)cân là 2 cạnh bên của nó phải bằng nhau
đọc đề mình đã thấy nó không hợp lí rồi Nguyễn Hải Văn
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!