Biết x.y thỏa mãn \(\frac{3x-y}{x+y}=\frac{3}{4}\)Tỉ số \(\frac{x}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 4(3x - y) = 3(x + y)
12x - 4y = 3x + 3y
12x - 4y - 3x - 3y = 0
9x - 7y = 0
9x = 7y
x/7 =y/9
=> x/y = 7/9
Áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x+3x=3y+4y\)
\(\Rightarrow15x=7y\)
\(\Rightarrow\frac{x}{7}=\frac{y}{15}\Rightarrow\frac{x}{y}=\frac{7}{15}\)
Vậy tỉ số \(\frac{x}{y}=\frac{7}{15}\)
\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)
xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5
xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5
Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{2x-y}{2}=\frac{x+y}{3}=\frac{\left(2x-y\right)-\left(x+y\right)}{2-3}=2y-x\)
\(\Rightarrow2x-y=4y-2x\Rightarrow4x=5y\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Áp dụng công thức lớp 7 ; \(\frac{a}{b}\)= \(\frac{c}{d}\) thì \(\frac{a}{c}\)= \(\frac{b}{d}\)
thì \(\frac{2x-y}{2}\)= \(\frac{x+y}{3}\)= \(\frac{2x-y-\left(x+y\right)}{2-3}\)= \(\frac{x-2y}{-1}\)= - (x - 2y ) = - x + 2y = 2y + (- x) = 2y - x
=> .....................................x/y = 5/4
Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=> (2x - y).3 = (x+y) .2
6x - 3y = 2x + 2y
6x - 2x = 3y + 2y
4x = 5y
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)
Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
đặt t=x/y
\(\frac{3}{4}=\frac{3t-1}{t+1}\Leftrightarrow3\left(t+1\right)=4\left(3t-1\right)\Rightarrow9t=4\Rightarrow t=\frac{4}{9}=\frac{x}{y}\)