y x 10 = 100 x 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}\left(2x-3\right)^{10}\ge0\forall x\\\left[100\left(x+2y\right)\right]^{100}\ge0\forall x;y\end{cases}}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-3=0\\x+2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\y=-0,75\end{cases}}\)
Vậy x = 1,5 ; y = -0,75
\(\left(2x-3\right)^{10}+\left(x+2y\right)^{100}\le0\)
Ta có: \(\left(2x-3\right)^{10}\)và \(\left(x+2y\right)^{100}\) là số chính phương. => \(\left(2x-3\right)^{10}\ge0;\left(x+2y\right)^{100}\ge0\)
Mà \(\left(2x-3\right)^{10}+\left(x+2y\right)^{100}\le0\)
=> \(\left(2x-3\right)^{10}=0;\left(x+2y\right)^{100}=0\)
=> 2x - 3 = 0; x + 2y = 0. => x = 3/2; y = -3/4.
1.Thử với p=2 ko được.
Thử với p=3 được.
Thử với >3 là 3k+1 và 3k+2.
=>p=3.
2.Phân tích 10 ra thừa số nguyên tố rồi kẻ bảng.
3.Tách riêng x và số ra.
Thực hiện các bước đã nêu ở phương pháp ta có
a) Nhập phương trình elip theo cú pháp x^2/10 + y^2/4 = 1 vào vùng nhập lệnh ta được hình elip dưới đây:
b) Nhập phương trình elip theo cú pháp x^2/12 + y^2/3 = 1 vào vùng nhập lệnh ta được hình elip dưới đây:
c) Nhập phương trình elip theo cú pháp x^2/100 + y^2/36 = 1 vào vùng nhập lệnh ta được hình elip dưới đây:
y x 10=200
y =200:10
y =20
k nhé
y x 10 = 200
y = 200 : 10
y = 20