K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

x = 13 nhé bạn

17 tháng 1 2017

GTLL=15 và x=2

hình như bạn cho đề sai

18 tháng 10 2016

đúng đè mà!

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

23 tháng 10 2021

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)

23 tháng 10 2021

mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha

NV
21 tháng 3 2023

\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)

Do \(x^2+3\ge3;\forall x\)

\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)

\(\Rightarrow B\le1+4=5\)

Vậy \(B_{max}=5\) khi \(x=0\)

20 tháng 3 2019

Ta có  : \(B=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}.\)Do \(x^2\ge0\)với mọi x nên \(x^2+3\ge3\Rightarrow\frac{12}{x^2+3}\le4\Rightarrow\frac{12}{x^2+3}+1\le4+1\)hay \(B\le5.\)Vậy \(maxB=37\)đạt được khi \(x=0.\)

12 tháng 8 2016

Để X^2+15/ X^2 + 3 đạt GTLN

Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất

\(x^2\ge0\Leftrightarrow x^2+3\ge0+3=3\)

=>GTNN của mẫu là 3 khi đó x2=0 <=>x=0

=>Giá trị của tử khi x=0  là \(0^2+15=15\)

=>GTLN của biểu thức là:\(\frac{15}{3}=5\Leftrightarrow x=0\)

 

 
12 tháng 8 2016

\(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có

\(x^2\ge0\) với mọi x

\(\Rightarrow x^2+3\ge3>0\)

\(\Rightarrow\frac{1}{x^2+3}\ge\frac{1}{3}\)

\(\Rightarrow\frac{12}{x^2+3}\ge4\)

\(\Rightarrow1+\frac{12}{x^2+1}\ge5\)

Dấu " = " xảy ra khi x=0

Vậy biểu thức đạt giá trị nhỏ nhất là 5 khi x=0

4 tháng 2 2017

giá trị lớn nhất là 15 khi x=-3

4 tháng 2 2017

Giá trị lớn nhất của biểu thức B = 225

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull