tính G= \(\frac{6^2}{1.7}+\frac{6^2}{7.13}+\frac{6^2}{13.19}+...+\frac{6^2}{n\left(n+6\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{601.607}\right)\)\(\ne0\)
\(\Rightarrow x=0\)
\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+......+\frac{5}{601.607}\right)=0\)
\(\Rightarrow X:\left(\frac{5}{1}-\frac{5}{7}+\frac{5}{7}-\frac{5}{13}+\frac{5}{13}+......+\frac{5}{601}-\frac{5}{607}\right)=0\)
\(\Leftrightarrow X:\left(5-\frac{5}{607}\right)=0\)
\(\Leftrightarrow X:\frac{3030}{607}=0\)
\(\Leftrightarrow X=0\)
CÁCH 2:\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)=0\)
\(\Leftrightarrow X=0.\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)\)
\(\Leftrightarrow X=0\)
rất đơn giản
nhân 3 vào tư và mẫu sau đó tách \(\frac{1}{3}\) ra
ta có \(\frac{1}{3}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{601.607}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{601}-\frac{1}{607}\right)\)
=1/3 . ( 1-1/207)
bây giờ tự tính nha
C = \(25.\left(\frac{-1}{3}\right)^3\) \(+\frac{1}{5}\) \(-2.\left(\frac{-1}{2}\right)^2\) \(-\frac{1}{2}\)
C = \(25.\left(\frac{-1}{27}\right)+\frac{1}{5}\) \(-2.\frac{1}{4}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-\frac{1}{2}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-1\)
C = \(\frac{-125}{135}\) \(+\frac{27}{135}\) \(-\frac{135}{135}\)
C = \(\frac{-233}{135}\)
D = \(-8.\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)
D = \(-8.\frac{1}{2}\) \(.\frac{12}{13}\)
D = \(-4.\frac{12}{13}\)
D = \(\frac{-48}{13}\)
E = \(5\sqrt{16}\) \(-4\sqrt{9}\) \(+\sqrt{25}\) \(-0,3\sqrt{400}\)
E = \(5.4-4.3+5-0,3.20\)
E = \(20-12+5-6\)
E = \(8+\left(-1\right)\)
E = \(7\)
F = \(\left(\frac{-3}{2}\right)\) \(+\left|\frac{-5}{6}\right|\) \(-1\frac{1}{2}\) \(:6\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{3}{2}\) \(.\frac{1}{6}\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{1}{4}\)
F = \(\left(\frac{-18}{12}\right)\) \(+\frac{10}{12}\) \(-\frac{3}{12}\)
F = \(\frac{-11}{12}\)
Chúc cậu hk tốt ~
\(a)\) \(A=\frac{5\left(2^2.3^2\right)^9.\left(2^2\right)^6-2\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(A=\frac{2^{30}.3^{18}.5-2^{29}.3^{18}}{2^{28}.3^{18}.5-2^{29}.3^{18}.7}\)
\(A=\frac{2^{29}.3^{18}\left(2.5-1\right)}{2^{28}.3^{18}\left(5-2.7\right)}\)
\(A=\frac{2\left(10-1\right)}{5-14}\)
\(A=\frac{2.9}{-9}\)
\(A=-2\)
Vậy \(A=-2\)
\(b)\) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12}{4}:\frac{5}{6}\right].\frac{2}{9}\)
\(B=81.\frac{18}{5}.\frac{2}{9}\)
\(B=\frac{324}{5}\)
Vậy \(B=\frac{324}{5}\)
Chúc bạn học tốt ~ ( mỏi tay qué >_< )
G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )
=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)
=6(1-n/n+6)
=6.6/n+6
=36/n+6
vậy G=36/n+6