K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2022

( 2014 x 198 - 4028 x 99 ) x 2015

= ( 2014 x 2 x 99 - 4028 x 99 ) x 2015

= 0 x 2015 = 0

20 tháng 9 2021

1 D => keep

2 C => speaking

3 A => have been waiting

4 B => take

5 B => laughing

6 D => to be seen

7 A => seems

8 B => to meeting

9 B => to be

10 C => study

23 tháng 2 2022

lm chi tiết ra cho mik dc ko nhỉ

23 tháng 2 2022

làm từng bước giải ra hộ mik với ạ

 

18 tháng 9 2016

= 1 X 2015 = 2015

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$. Khi đó:

$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$

$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$

Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$

-------------------

$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$

$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

17 tháng 10 2023

1: \(75^3:\left(-25\right)^3=\left(\dfrac{75}{-25}\right)^3=\left(-3\right)^3=-27\)

2: \(\left(-60\right)^2:\left(-5\right)^2=\dfrac{60^2}{5^2}=12^2=144\)

3: \(169^2:\left(-13\right)^2=\dfrac{169^2}{13^2}=\left(\dfrac{169}{13}\right)^2=13^2=169\)

4: \(\left(\dfrac{1}{2}\right)^2:\left(\dfrac{3}{2}\right)^2=\left(\dfrac{1}{2}:\dfrac{3}{2}\right)^2=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)

5: \(\left(\dfrac{2}{3}\right)^3:\left(\dfrac{8}{27}\right)^3=\left(\dfrac{2}{3}:\dfrac{8}{27}\right)^3=\left(\dfrac{2}{3}\cdot\dfrac{27}{8}\right)^3=\left(\dfrac{9}{4}\right)^3=\dfrac{729}{64}\)

6: \(\left(\dfrac{5}{4}\right)^4:\left(\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}:\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}\cdot\dfrac{2}{15}\right)^4=\left(\dfrac{1}{6}\right)^4=\dfrac{1}{1296}\)

7: \(\left(\dfrac{7}{8}\right)^5:\left(\dfrac{21}{16}\right)^5\)

\(=\left(\dfrac{7}{8}:\dfrac{21}{16}\right)^5\)

\(=\left(\dfrac{7}{8}\cdot\dfrac{16}{21}\right)^5=\left(\dfrac{2}{3}\right)^5=\dfrac{32}{243}\)

8: \(\left(\dfrac{5}{6}\right)^4:\left(\dfrac{25}{18}\right)^4=\left(\dfrac{5}{6}:\dfrac{25}{18}\right)^4=\left(\dfrac{5}{6}\cdot\dfrac{18}{25}\right)^4=\left(\dfrac{3}{5}\right)^4=\dfrac{81}{625}\)

 

9: 

\(\left(-\dfrac{3}{4}\right)^3:\left(\dfrac{9}{8}\right)^3=\left(-\dfrac{3}{4}:\dfrac{9}{8}\right)^3=\left(-\dfrac{3}{4}\cdot\dfrac{8}{9}\right)^3\)

\(=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)

10:

\(\left(\dfrac{9}{10}\right)^6:\left(\dfrac{27}{-20}\right)^6=\left(\dfrac{9}{10}:\dfrac{-27}{20}\right)^6\)

\(=\left(\dfrac{9}{10}\cdot\dfrac{20}{-27}\right)^6=\left(-\dfrac{2}{3}\right)^6=\dfrac{64}{729}\)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$