K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

chứng minh Phương trình trên vô nghiệm

19 tháng 5 2021

a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)

=> Phương trình luôn có nghiệm với mọi m

b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)

TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)

TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)

Vậy ...

16 tháng 5 2021

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v

1 tháng 10 2017

Để bất phương trình nghiệm đúng với mọi x trước tiên bất phương trình phải xác định trên R.

Tức

 

Khi đó yêu cầu bài toán tương đương với:

Ta luôn có .

Xét  Vậy khi m ≤ - 1 4  thì điều này không xảy ra, tức với mọi m ≤ - 1 4  thì  Vậy các giá trị cần tìm là  m ≤ - 1 4

Chọn đáp án C.

24 tháng 5 2022

`a)` Ptr có:`\Delta' =[-(m-1)]^2-(-3-m)`

                            `=m^2-2m+1+3+2m=m^2+4 > 0 AA m`

  `=>` Ptr có `2` nghiệm `AA m`

`b) AA m`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-3-m):}`

Ta có:`x_1 ^2+x_2 ^2 >= 10`

`<=>(x_1+x_2)^2-2x_1.x_2 >= 10`

`<=>(2m-2)^2-2(-3-m) >= 10`

`<=>4m^2-8m+4+6+2m >= 10`

`<=>4m^2-6m+10 >= 10`

`<=>4m^2-6m >= 0`

`<=>2m(2m-3) >= 0`

`<=>` $\left[\begin{matrix} m \ge \dfrac{3}{2}\\ m \le 0\end{matrix}\right.$

Vậy `m >= 3/2` hoặc `m <= 0` thì t/m yêu cầu đề bài

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm

b: Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2>=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>2m(2m-3)>=0

=>m>=3/2 hoặc m<=0

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

10 tháng 4 2017

Câu 1 x^2 - 8x +12 = 0 ( a = 1 ; b' = -4 ; c = 12 )

denta phẩy = b' bình - ac = (-4)^2 - 1*12 = 16 - 12 = 4 > 0

Do denta phẩy > 0 => pt có 2 ngiệm phân biệt

x một = -b' + căn denta phẩy tất cả trên a = 4 + căn 4 trên 1 = 6

x hai = -b' - căn denta phẩy tất cả trên a = 4 - căn 4 trên 1 = 2

KLuan 

Câu 2 

a) Với m = -1 =>  x^2 + 4x +3 = 0 ( a = 1 ; b= 4 ; c = 3)

     Xét a - b + c = 1 - 4 + 3 = 0 

       => x một = -1 ; x hai = -c trên a = -3 / 1 = -3

b)  denta = b^2 - 4ac = -( m - 3 ) tất cả mũ hai - 4 * 1 * ( - 2m + 1 )

                               = m^2 + 2m + 5 

                               = m^2 + 2m + 1/4 + 19/4 > hoặc = 19/4 >0

Vậy với mọi m thì pt có 2 nghiệm phân biệt 

CHÚC BẠN HỌC GIỎI NHA !!!!!!!!!!!!!!

           

NV
8 tháng 5 2021

\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m