K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.

14 tháng 1 2017

Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.

n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.

Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.

Mà: 2; 4; 8 không chia hết cho 5.

Nên: n﴾n+1﴿+2 không chia hết cho 5.

Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N. 

15 tháng 12 2018

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

15 tháng 12 2018

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

17 tháng 9 2018

Xet \(n=3k\)

\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)

Xet \(n=3k+1\)

\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)

Xet \(n=3k+2\)

\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)

\(\Rightarrow n^2+n+2⋮̸3\)

\(\Rightarrow n^2+n+2⋮̸15\)

17 tháng 9 2018

Mod là sao

6 tháng 4 2016

a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)

=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)

b, Gỉa sử n chia hết cho 3

=> n2+n+1 chia 3 dư 1.

Nếu n chia 3 dư 1

=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3

Nếu n chia 3 dư 2

=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.

Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5

=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9

=> n+ n+1 ko chia hết cho 15.

thấy sai thì góp ý nha

b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)

*Trường hợp 1: n chia 2 dư 1

\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(1)

*Trường hợp 2: n chia hết cho 2

\(\Leftrightarrow n^2⋮4\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(2)

Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)

d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ta có: n và n-1 là hai số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)

\(\Leftrightarrow n^3-n⋮2\)(3)

Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)

\(\Leftrightarrow n^3-n⋮3\)(4)

Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)

hay \(n^3-n⋮6\forall n\in N\)

a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)

\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)

c) Ta có: \(50^{n+2}-50^{n+1}\)

\(=50^n\cdot2500-50^n\cdot50\)

\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)

\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

18 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N

18 tháng 1 2017

Ta có: n2+n+2=n(n+1)+2

Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.

Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.

Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).

Vậy số trên không chia hết cho 15.

24 tháng 11 2017

\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^2.5^n.4=25.5^n.4=100.5^n\) chia hết cho 100 (đpcm)

24 tháng 11 2017

\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^n.25.4=5^n.100\)

Ta thấy :\(5^n.100⋮100\)

\(\RightarrowĐPCM\)