Cho số nguyên dương k với k!=1.2.3....k . Cho số nguyên n>3. Chứng Minh Rằng :kn=1!+2!+3!+...+n! không thể viết dưới dạng ab với a; b là các số nguyên, b>1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương
ta có: 1!+2!+3!+4! chia 10 dư 3
5!+6!+...+n! chia hết cho 10
vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)
* chứng minh A ko thể là lũy thừa vs số mũ lẻ
+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên
+) n lớn hơn hoặc bằng 5
ta có: 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+...+n! chia hết cho 9
=> A chia hết cho 9
+) ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia 27 dư 9 (2)
từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )

Với \(n>3\) thì ta có:
\(1!+2!+3!+4!=33\) mà \(5!;6!;7!;.....\) đều có tận cùng là 0 nên ta có thể biểu diễn lại A:
\(A=1!+2!+3!+....+n!=\overline{.....3}\) không thể biểu diễn dưới dạng \(a^b\) với \(a;b\in Z;b>1\)

Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((
Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:
Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)
Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)
Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)
Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)
Do vậy ta có đpcm.
P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
oggy và những chú gián làm chừng chừng