K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

\(x^{161}+x^{37}+x^{13}+x^5+x+2006\)

\(=\left(x^{161}-x\right)+\left(x^{37}-x\right)+\left(x^{13}-x\right)+\left(x^5-x\right)+5x+2006\)

\(=x\left(x^{160}-1\right)+x\left(x^{36}-1\right)+x\left(x^{12}-1\right)+x\left(x^4-1\right)+5x+2006\)

\(=x\left(x^{160}-1\right)+x\left(x^{36}-1\right)+x\left(x^{12}-1\right)+x\left(x^4-1\right)+5x+2006\)

\(=x\left[\left(x^4\right)^{40}-1\right]+x\left[\left(x^4\right)^9-1\right]+x\left[\left(x^4\right)^3-1\right]+x\left(x^4-1\right)+5x+2006\)

Vì \(x\left[\left(x^4\right)^{40}-1\right]+x\left[\left(x^4\right)^9-1\right]+x\left[\left(x^4\right)^3-1\right]+x\left(x^4-1\right)⋮\left(x^4-1\right)⋮\left(x^2+1\right)\)

nên \(x\left[\left(x^4\right)^{40}-1\right]+x\left[\left(x^4\right)^9-1\right]+x\left[\left(x^4\right)^3-1\right]+x\left(x^4-1\right)+5x+2006\)chi

\(x^2+1\) dư \(5x+2006\)

Vậy đa thức dư là \(5x+2006\)

18 tháng 8 2017

Ta có

P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2  Và  Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1

Khi đó

M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1

Bậc của  M ( x )   =   - x 3   +   x 2   +   4 x   -   1   l à   3

Chọn đáp án C

10 tháng 1 2018

Do đa thức chia có bậc 2

nên đa thức dư là nhị thức bậc nhất

Đặt đa thức dư là \(ax+b\)

Đa thức thương là \(Q_{\left(x\right)}\)

\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)

Đẳng thức trên luôn đúng \(\forall x\)

nên lần lượt cho \(x=1;x=-1\)

\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)

\(\Rightarrow ax+b=2x+2\)

Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)

là \(2x+2\)

4 tháng 6 2018

31 tháng 3 2022

M=(x5-x2+x)-(4x5+x3-x+1)
   =x5-x2+x-4x5-x3+x-1
   =(x5-45)-x3-x2+(x+x)-1
   =-3x5-x3-x2+2x-1

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1

a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)

\(=x^5+x^3-4x^2-2x+5\)

\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)

\(=x^5-x^4+2x^2-3x+1\)

b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)

\(=2x^5-x^4+x^3-2x^2-5x+6\)