K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

a^0 + a^1 + a^2 + a^3 + .. a^n = (a^(n+1) - 1)/(n-1)

=> A = 2^2011 -  2 

* A = 2*(2^2010-1) chia hết cho 2

* Ta có 2^6 đồng dư 1 ( mod 21 )

=> (2^6)^335 đồng dư 1^335 = 1 ( mod 21)

=> 2^2010 đồng dư 1 ( mod 21 ) 

=> 2^2010 -1 chia hết cho 21

Mà (21;2)=1

=> A chia hết cho 42

11 tháng 1 2017

HD chứng minh chia hết cho 2 cho 3 và 7 

12 tháng 1 2017

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

7 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{59}.3\)

\(A=3\left(2+2^3+...+2^{59}\right)\)

 Vì \(3\left(2+2^3+...+2^{59}\right)⋮3\)

\(\Rightarrow A⋮3\)

7 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{58}.7\)

\(A=7\left(2+2^4+...+2^{58}\right)\)

Vì \(7\left(2+2^4+...+2^{58}\right)⋮7\)

\(\Rightarrow A⋮7\)

18 tháng 12 2017

Bn chứng minh nó chia hết cho 6 và 7 là đc nhé! hihi

18 tháng 12 2017

Mong mọi người trả lời gấp! Mai em thi rồi ạ!

10 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^59+2^60)

   = 2.3 + 2^3.3 + .... + 2^59 .3 = 3.(2+2^2+....+2^59) chia hết cho 3

A = (2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)

   = 2.7 + 2^4.7 + .... +2^58.7 = 7.(2+2^4+....+2^58) chia hết cho 7

Dễ thấy A chia hết cho 2 mà lại có A chia hết cho 3;7 ( cm trên )

=> A chia hết cho 2.3.7 = 42 ( vì 2;3;7 là 2 số nguyên tố cùng nhau ) 

15 tháng 11 2017

ko có cơ sở

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4