cho hso \(y=\dfrac{x}{x^2-x+1}\). Tìm tập nghiệm bpt 2x.y'-3y\(^2\)\(\ge\) 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x+\dfrac{\sqrt{x}}{x+1}\Rightarrow f'\left(x\right)=1+\dfrac{1-x}{2\sqrt{x}\left(x+1\right)^2}\)
\(f'\left(x\right)-1>0\Leftrightarrow\dfrac{1-x}{2\sqrt{x}\left(x+1\right)^2}>0\)
\(\Rightarrow0< x< 1\)
\(-x^2-2\left(m-1\right)x+2m-1>0\)
\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)
\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m\ge\dfrac{1}{2}\)
\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\) ; ĐKXĐ: \(x\ne0;x\ne2\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x^2+2x-x+2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy: nghiệm của bpt S = {-1}
\(\Leftrightarrow\dfrac{\left(x+2\right)x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\) ∀x≠{0;2}
\(\Leftrightarrow x^2+2x-\left(x-2\right)=2\\ \Leftrightarrow x^2+2x-x+2-2=0\\ \Leftrightarrow x^2+x=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
xét điều kiện, ta loại x = 0, nhận x = -1
x^2 + 10 ≤ 2x^2+1/x^2 -8
<=> x^2 + 10 - 2x^2+1/x^2 -8 ≤ 0
<=> (x^2+10)(x^2-8)-2x^2+1/x^2-8 ≤ 0
<=> x^4+2x^2-80-2x^2+1/x^2-8 ≤ 0
<=> x^4-81/x^2-8 ≤ 0
<=> (x^2+9)(x^2-9)/x^2-8 ≤ 0
<=> x^2-9/x^2-8 (do x^2 + 9 >0)
<=> x^2-9≤0, x^2-8>0
<=> -3≤x≤3, x<-2√2 hoặc x>2√2
<=> -3≤x<-2√2 hoặc 2√2<x≤3
=> bpt có 2 nghiệm nguyên là -3, 3
Tập nghiệm của BPT là \(\left[{}\begin{matrix}x\le0\\1< x\le\dfrac{5}{2}\end{matrix}\right.\)
\(y'=\dfrac{2x^2-x-x^2+x-1}{\left(x^2-x+1\right)^2}=\dfrac{x^2-1}{\left(x^2-x+1\right)^2}\)
\(\dfrac{2x^3-2x}{\left(x^2-x+1\right)^2}-3.\dfrac{x^2}{\left(x^2-x+1\right)^2}\ge0\)
\(\Leftrightarrow2x^3-2x-3x^2\ge0\Leftrightarrow x^2+2x\le0\Leftrightarrow x\left(x+2\right)\le0\)
\(\Leftrightarrow-2\le x\le0\)
em cam on ạ