Cho dãy a, a+1, a+2 ... a+9 với a thuộc N. Tìm a để dãy có nhiều số nguyên tố nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1/ Xét n=0: Dãy có 4 SNT: 2,3,5,7
Xét n=1: Dãy có 5 SNT: 2,3,5,7,11
Xét n=2: Dãy có 4 SNT: 3,5,7,11
Xét n>2: Dãy có 5 số chẵn lớn hơn 2 và ít nhất 1 số lẻ chia hết cho 3 và lớn hơn 3 --> chỉ còn nhiều nhất 4 SNT
Vậy n=1 thỏa đề.
2/ Xét n>5:
Dãy có 15 số chẵn lớn hơn 2 --> hợp số
15 số còn lại là 15 số lẻ liên tiếp nên có ít nhất 5 số chia hết cho 3 và lớn hơn 3 --> hợp số
10 số lẻ còn lại có ít nhất 2 số chia hết cho 5 và tất nhiên lớn hơn 5 ---> hợp số
Vậy còn nhiều nhất 8 SNT trong dãy trên.
Xét n=0: Dãy có 4 SNT: 2,3,5,7
Xét n=1: Dãy có 5 SNT: 2,3,5,7,11
Xét n=2: Dãy có 4 SNT: 3,5,7,11
Xét n>2: Dãy có 5 số chẵn lớn hơn 2 và ít nhất 1 số lẻ chia hết cho 3 và lớn hơn 3 => chỉ còn nhiều nhất 4 SNT
Vậy n=1 thỏa mãn đề bài
#include <bits/stdc++.h>
using namespace std;
long long a[1000],n,i,c[1000],k;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
for (i=1; i<=n; i++)
c[a[i]]+=1;
k=0;
for (i=1; i<=n; i++) k=max(k,c[i]);
for (i=1; i<=n; i++) if (k==c[i]) cout<<i<<" "';
return 0;
}
\(\text{Với a = 2; dãy số: 2;3;4;...;11 có 5 số nguyên tố là 2;3;5;7;11.}\)
Với \(a\ge3\) thì dãy số \(a;a+1;a+2;...;a+9\) có 5 số lẻ liên tiếp, suy ra trong 5 số đó có ít nhất một số chia hết cho 3. 5 số còn lại là số chẵn nên là hợp số. Trong trường hợp này có tối đa 4 số nguyên tố.
Vậy a = 2 thì dãy số đã cho có nhiều số nguyên tố nhất và có 5 số nguyên tố.