tính :B=1002+2002+3002+...........+10002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đề sai, đoạn cuối phải là $2001+(-2002)+2003$
$1+(-2)+3+(-4)+....+2001+(-2002)+2003$
$=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]+2003$
$=\underbrace{(-1)+(-1)+(-1)+...+(-1)}_{1001}+2003$
$=(-1).1001+2003=-1001+2003=1002$
Đáp án D.
3002+3002+3002+3002-3002
=3002x4-3002
SUY RA LA : 3002x4-3002=3002x3 vi -3002 LA CHIA 1
NEN SUY RA = 3002x3=9006
Dap an la : 9006 nhe ban
\(\frac{2003\times4+1998+2001\times2002}{2002+2002\times1002+2002\times1003}\)
\(=\frac{2003\times4+2\times999+2001\times2\times1001}{2002.\left(1+1002+1003\right)}\)
\(=\frac{2\times\left(2003\times2+999+2001\times1001\right)}{1001\times2\times\left(1+1002+1003\right)}\)
\(=\frac{2003\times2+999+2001\times1001}{1001\times\left(1+1002+1003\right)}\)
\(=1\)
mk ko bít
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(A=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2001}+\frac{1}{2002}=B\)
=> A/B = 1
số số hạng của tổng B là:
(1000-100):100+1=10(số hạng)
tổng B là:
(1000+100)x10:2=5500