Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A kẻ cát tuyến cắt đường tròn (O) tại C, cắt đường tròn (O') tại D sao cho CD vuông góc với AB, đường thẳng CB cắt đường tròn (O) tại M, đường thẳng DB cắt đường tròn (O') tại N. Chứng minh AB là tia phân giác của góc MAN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau, OB và OC là phân giác ngoài của tam giác ABC. Ta có
\(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\)
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi.
2. Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
\(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\) Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.
3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\) Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\) Mặt khác theo định lý Pitago
\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)
Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\) là giao điểm ba đường trung trực.
a: O là trung điểm của AB
=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)
ΔOBD vuông tại B
=>\(OD^2=OB^2+BD^2\)
=>\(OD^2=4,8^2+6,4^2=64\)
=>OD=8(cm)
Xét ΔDON vuông tại O có OB là đường cao
nên \(OB^2=BN\cdot BD\)
=>\(BN\cdot6,4=4,8^2\)
=>BN=3,6(cm)
DN=DB+BN
=3,6+6,4
=10(cm)
Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)
=>\(ON^2+8^2=10^2\)
=>\(ON^2=36\)
=>ON=6(cm)
b: Xét (O) có
DM,DB là tiếp tuyến
Do đó; OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)
=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)
=>OC là phân giác của góc MOA
Xét ΔCAO và ΔCMO có
OA=OM
\(\widehat{COA}=\widehat{COM}\)
OC chung
Do đó: ΔCAO=ΔCMO
=>\(\widehat{CAO}=\widehat{CMO}=90^0\)
=>AC\(\perp\)AB
mà BD\(\perp\)AB
nên BD//AC
Xét ΔOAC vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BON}\)
Do đó: ΔOAC=ΔOBN
=>OC=ON
=>O là trung điểm của CN
Xét ΔDCN có
DO là đường cao
DO là đường trung tuyến
Do đó;ΔDCN cân tại D
=>DC=DN
c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)
nên CA là tiếp tuyến của (O)
a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C
ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b:ΔOAC=ΔOBC
=>CB=CA
=>C nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OC là đường trung trực của BA
=>OC\(\perp\)AB
mà OC//AD
nên AB\(\perp\)AD
=>ΔABD vuông tại A
Ta có: ΔABD vuông tại A
=>ΔABD nội tiếp đường tròn đường kính DB
mà ΔABD nội tiếp (O)
nên O là trung điểm của DB
=>D,O,B thẳng hàng
Xét ΔAKD vuông tại K và ΔCAO vuông tại A có
\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)
Do đó: ΔAKD\(\sim\)ΔCAO