x-5=50
ai giải mình like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
=> (42-x). 5= 125
=> (42-x)=125: 5
=> (42-x)=25
=> x=42-25
=>x= 17
21.43 -27.21
=21. (43-27)
=21.16
=336
a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2
b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)
\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)
Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32
x - 5 = 50
x = 50 + 5
x = 55
x=50+5
x=55