\(\sqrt{x^2-9}+\dfrac{1}{x^2-9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{x-4}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+\sqrt{x}+22}{x-4}\)
d: Ta có: \(D=\dfrac{1}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-12}{x-9}\)
\(=\dfrac{\sqrt{x}-3+x+3\sqrt{x}+2\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+6\sqrt{x}-15}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
1.
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-15\sqrt{x}}{x-9}\)
2.
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}+9+2\sqrt{x}-6+x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x}{x-9}\)
a) Đk: \(x>0;x\ne9;x\ne25\)
Đặt \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]\)\(:\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}+x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{-\sqrt{x}+5}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(3+\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-5}\)
\(=\dfrac{x}{\sqrt{x}-5}\)
b) Đk: \(x\ge0;x\ne1;x\ne25\)
Biểu thức
\(=\left[\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{x+9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]:\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)+\sqrt{x}\left(\sqrt{x}+5\right)-x-9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}+5}{1-\sqrt{x}}\)
\(=\dfrac{x-7\sqrt{x}+10+x+5\sqrt{x}-x-9}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)\(=\dfrac{\left(1-\sqrt{x}\right)^2}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}=\dfrac{1-\sqrt{x}}{\sqrt{x}-5}\)
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)
=2
Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Ta có: \(P=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{-\left(x-9\right)+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\dfrac{-x+9+2x-4\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)
a, ĐKXĐ : \(x\ge1\)
Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x=290\left(TM\right)\)
Vậy ....
b, ĐKXĐ : \(x\ge3\)
Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )
Vậy ..
a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow x-1=17^2=289\)
hay x=290
Vậy: S={290}
b) Ta có: \(x-7\sqrt{x-3}+9=0\)
\(\Leftrightarrow x-7\sqrt{x-3}=-9\)
\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)
Vậy: S={19;12}
a) \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\left(x\ge0;x\ne0\right)\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}+\dfrac{2\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x+3}\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b) \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\left(x\ge0;x\ne1\right)\)
\(=\dfrac{3.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
\(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\cdot\dfrac{\sqrt{x}-2+3}{3}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}+1}{3}=\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}\)
Tìm điều kiện để biểu thức có nghĩa nha mọi người
Đặt \(A=\sqrt{x^2-9}+\dfrac{1}{\sqrt{x^2-9}}\)
A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\dfrac{1}{\sqrt{x^2-9}}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\ge9\\x^2>9\end{matrix}\right.\)\(\Leftrightarrow x^2>9\)
\(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\)
Chúc học tốt nhé :))