Chứng minh 15+25+35+.......+n5 chia hết cho 1+2+3+.....+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^{15}+2^{18}\)
\(A=2^{15}\left(1+2^3\right)\)
\(A=2^{15}\left(1+8\right)\)
\(A=2^{15}\cdot9⋮9\left(đpcm\right)\)
Câu 1:
a) n+4 chia hết cho n
suy ra 4 chia hết cho n(vì n chia hết cho n)
suy ra n thuộc Ư(4) {1;2;4}
Vậy n {1;2;4}
b) 3n+7 chia hết cho n
suy ra 7 chia hết cho n(vì 3n chia hết cho n)
suy ra n thuộc Ư(7) {1;7}
Vậy n {1;7}
c) 27-5n chia hết cho n
suy ra 27 chia hết cho n(vì 5n chia hết cho n)
suy ra n thuộc Ư(27) {1;3;9;27}
Vậy n {1;3;9;27}
d) n+6 chia hết cho n+2
suy ra (n+2)+4 chia hết cho n+2
suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)
suy ra n+2 thuộc Ư(4) {1;2;4}
n+2 bằng 1 (loại)
n+2 bằng 2 suy ra n bằng 0
n+2 bằng 4 suy ra n bằng 2
Vậy n {0;2}
e) 2n+3 chia hết cho n-2
suy ra 2(n-2)+7 chia hết cho n-2
suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)
suy ra n-2 thuộc Ư(7) {1;7}
n-2 bằng 1 suy ra n bằng 3
n-2 bằng 7 suy ra n bằng 9
Vậy n {3;9}
Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
Ta có: \(2^{17}+2^{14}\)
\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)
\(15^3-25^2\)
\(=3^3.5^3-5^4\)
\(=5^3\left(27-5\right)=5^3.2.11⋮11\)
\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)
1a S1=1+21+22+...+239
S1=(1+2+22+23).1+.........(1+2+22+23).236
S1=15.1+...........15.236 chia hết cho 15
1.
b) \(S2=125^7-25^9\)
\(=5^{21}-5^{18}=5^{18}\left(5^3-1\right)\)
\(=5^{18}.124⋮124\)
=> S2 \(⋮124\left(đpcm\right)\)
hc tốt
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.