K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2022

x=105

 

4 tháng 5 2017

\(A=\frac{100^{2007}+1}{100^{2008}+1}\Rightarrow100.A=\frac{100^{2008}+100}{100^{2008}+1}=\frac{100^{2008}+1+99}{100^{2008}+1}=1+\frac{99}{100^{2008}+1}\)

\(B=\frac{100^{2006}+1}{100^{2007}+1}\Rightarrow100.B=\frac{100^{2007}+100}{100^{2007}+1}=\frac{100^{2007}+1+99}{100^{2007}+1}=1+\frac{99}{100^{2007}+1}\)

Vì \(\frac{99}{100^{2007}+1}>\frac{99}{100^{2008}+1};1=1\Rightarrow1+\frac{99}{100^{2007}+1}>1+\frac{99}{100^{2008}+1}\)hay \(A>B\)

Vậy \(A>B\)

3 tháng 6 2017

Nghỉ hè rồi 

25 tháng 6 2015

Vì tích trên có 100 thừa số nên thừa số 100-n là thừa số thứ 100.

Ta thấy: 100-1 là thừa số thứ 1

              100-2 là thừa số thứ 2

              100-3 là thừa số thứ 3

              ……………………..

              100-n là thừa số thứ 100

=>n=100=>100-n=100-100=0

Ta có: A=(100-1).(100-2).(100-3)…(100-n)

  =>     A=(100-1).(100-2).(100-3)…0

  =>     A=0

Vậy A=0

l-i-k-e cho mình nha bạn.

25 tháng 6 2015

A=(100-1).(100-2).(100-3)...(100-n) có 100 thừa số nên n=100

=>A=(100-1).(100-2).(100-3)...(100-100)=(100-1).(100-2).(100-3)...0=0

3 tháng 9 2015

 

Vì tích trên có 100 thừa số nên thừa số 100-n là thừa số thứ 100.

Ta thấy: 100-1 là thừa số thứ 1

              100-2 là thừa số thứ 2

              100-3 là thừa số thứ 3

              ……………………..

              100-n là thừa số thứ 100

=>n=100=>100-n=100-100=0

Ta có: A=(100-1).(100-2).(100-3)…(100-n)

  =>     A=(100-1).(100-2).(100-3)…0

  =>     A=0

Vậy A=0

 

21 tháng 3 2021

Ta có: Xét với $a^3-a;a∈Z$

$=a(a^2-1)$

$=(a-1)a(a+1)$

Ta thấy với $a∈Z$ thì $(a-1);a;(a+1)$ là 3 số nguyên liên tiếp

$⇒$Có 1 số chia hết cho 3; ít nhất  1 số chia hết cho 2

$⇒\begin{cases}(a-1)a(a+1) \vdots 3\\ (a-1)a(a+1) \vdots 2\end{cases}$

$⇒(a-1)a(a+1) \vdots 6$ (do $(3;2)=1$)

Hay $a^3-a \vdots 6$

Vậy ta có: $a_1^3-a_1 \vdots 6;a_2^3-a_2 \vdots 6;a_100^3-a^100 \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3-(a_1+a_2+a_3+...+a_100) \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

Mà $a_1+a_2+a_3+...+a_100=2021^{2022}$

$2021 \equiv 5 (mod 6)$

$⇒2021^{2022} \equiv 5^{2022} (mod  6)$

Mà $5 \equiv -1 (mod 6)$

$⇒5^{2022} \equiv 1 (mod 6)$

$⇒2021^{2022} \equiv 1 (mod 6)$

tức $a_1+a_2+a_3+...+a_100 \equiv 1 (mod 6)$

Mà $a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv 1 (mod 6)$

$⇒S \equiv 1 (mod 6)$

Hay $S-1 \vdots 6$ (đpcm)

21 tháng 3 2021

Dạ cho hỏi là: mod6 với ba que là gì vậy ạ 

14 tháng 2 2018

Ta dựa vào : \(\frac{a}{b}< \frac{a+1}{b+1}\)

Mà \(A=\frac{100^{1000}}{100^{900}}\)\(B=\frac{100^{1000}+1}{100^{900}+1}\)

\(\Rightarrow A< B\)