Cho A = {100;102;105;110}. Tìm x thuộc A để 11 + 13 + 15 + x chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{100^{2007}+1}{100^{2008}+1}\Rightarrow100.A=\frac{100^{2008}+100}{100^{2008}+1}=\frac{100^{2008}+1+99}{100^{2008}+1}=1+\frac{99}{100^{2008}+1}\)
\(B=\frac{100^{2006}+1}{100^{2007}+1}\Rightarrow100.B=\frac{100^{2007}+100}{100^{2007}+1}=\frac{100^{2007}+1+99}{100^{2007}+1}=1+\frac{99}{100^{2007}+1}\)
Vì \(\frac{99}{100^{2007}+1}>\frac{99}{100^{2008}+1};1=1\Rightarrow1+\frac{99}{100^{2007}+1}>1+\frac{99}{100^{2008}+1}\)hay \(A>B\)
Vậy \(A>B\)
Vì tích trên có 100 thừa số nên thừa số 100-n là thừa số thứ 100.
Ta thấy: 100-1 là thừa số thứ 1
100-2 là thừa số thứ 2
100-3 là thừa số thứ 3
……………………..
100-n là thừa số thứ 100
=>n=100=>100-n=100-100=0
Ta có: A=(100-1).(100-2).(100-3)…(100-n)
=> A=(100-1).(100-2).(100-3)…0
=> A=0
Vậy A=0
l-i-k-e cho mình nha bạn.
A=(100-1).(100-2).(100-3)...(100-n) có 100 thừa số nên n=100
=>A=(100-1).(100-2).(100-3)...(100-100)=(100-1).(100-2).(100-3)...0=0
Vì tích trên có 100 thừa số nên thừa số 100-n là thừa số thứ 100.
Ta thấy: 100-1 là thừa số thứ 1
100-2 là thừa số thứ 2
100-3 là thừa số thứ 3
……………………..
100-n là thừa số thứ 100
=>n=100=>100-n=100-100=0
Ta có: A=(100-1).(100-2).(100-3)…(100-n)
=> A=(100-1).(100-2).(100-3)…0
=> A=0
Vậy A=0
Ta có: Xét với $a^3-a;a∈Z$
$=a(a^2-1)$
$=(a-1)a(a+1)$
Ta thấy với $a∈Z$ thì $(a-1);a;(a+1)$ là 3 số nguyên liên tiếp
$⇒$Có 1 số chia hết cho 3; ít nhất 1 số chia hết cho 2
$⇒\begin{cases}(a-1)a(a+1) \vdots 3\\ (a-1)a(a+1) \vdots 2\end{cases}$
$⇒(a-1)a(a+1) \vdots 6$ (do $(3;2)=1$)
Hay $a^3-a \vdots 6$
Vậy ta có: $a_1^3-a_1 \vdots 6;a_2^3-a_2 \vdots 6;a_100^3-a^100 \vdots 6$
$⇒a_1^3+a_2^3+a_3^3+...+a_100^3-(a_1+a_2+a_3+...+a_100) \vdots 6$
$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$
Mà $a_1+a_2+a_3+...+a_100=2021^{2022}$
$2021 \equiv 5 (mod 6)$
$⇒2021^{2022} \equiv 5^{2022} (mod 6)$
Mà $5 \equiv -1 (mod 6)$
$⇒5^{2022} \equiv 1 (mod 6)$
$⇒2021^{2022} \equiv 1 (mod 6)$
tức $a_1+a_2+a_3+...+a_100 \equiv 1 (mod 6)$
Mà $a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$
$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv 1 (mod 6)$
$⇒S \equiv 1 (mod 6)$
Hay $S-1 \vdots 6$ (đpcm)
Ta dựa vào : \(\frac{a}{b}< \frac{a+1}{b+1}\)
Mà \(A=\frac{100^{1000}}{100^{900}}\); \(B=\frac{100^{1000}+1}{100^{900}+1}\)
\(\Rightarrow A< B\)
x=105