Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Các đường cao BB', CC' cắt nhau tại điểm H. Gọi M là trung điểm của BC. Tia MH cắt đường tròn (O) tại diểm P.
- Chứng minh hai tam giác BPC' và CPB' đồng dạng.
- Các dường phân gaic1 của các góc BPC', CPB' lần lượt cắt AB, AC tại các điểm E và F. Gọi O' là tâm đường tròn ngoại tiếp tam giác AEF; K là giao diểm của HM và AO'.
a) Chứng minh tứ giác PEKF nội tiếp
b) Chứng minh các tiếp tuyến tại E và F của đường tròn (O') cắt nhau tại một điểm nằm trên đường tròn (O).