Tìm số tự nhiên n để n^3-n^2-7n+1 là số nguyên tố lớn nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Xem lại cái đề thử đúng chưa nhé
\(U\left(n\right)=n^3-n^2-7n+1\)
U(0)=1;U(2)==-9;U(3)=-1;U(4)=21
Đặt n=(p+4) {xét luôn dương đỡ loạn)
\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương
\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)
\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)
với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)
với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố
với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố
với p=3k+1=>p(p+1)^2 chia 3 dư 1
xét tiếp:
với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại
=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại
"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:
Tạm chấp nhận p=3; n=7 (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)