K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

ko co so nao

1 tháng 1 2017

có nếu số mũ là chẵn

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

1 tháng 1 2017

không có đâu bạn à

1 tháng 1 2017

theo mk thì là không tồn tại một lũy thừa của 19 tận cùng là 001

good luck friend

Happy new year 2017 nha!!!!

20 tháng 11 2016

Lập dãy số :35;36;37;.....;3106

Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.

Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))

Ta có:(13m-13n)chia hết cho 100

\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100

Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100

\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01

Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01

13 tháng 1 2022

giải theo nguyên lý Dirichlet nhé

NM
13 tháng 1 2022

Xét tổng quát

undefined

30 tháng 5 2017

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

Xét 10001 số hạng 2019,20192,...,201910001

Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000

Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000

Vậy............