K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

\(\left(x-2\right)^2\ge0\) đẳng thức khi x=2

\(5.\left(x-2\right)^2\ge0\)đẳng thức khi x=2

\(5.\left(x-2\right)^2+1\ge1\)đẳng thức khi x=2

Vậy GTNN A là 1 khi x=2

31 tháng 12 2016

ta có 5(x-2)\(\ge\)\(\forall\)x

suy ra  5(x-2)2 + 1 \(\ge\)1  \(\forall\)x

Dấu "=" xảy ra khi x-2=0

     \(\Leftrightarrow\)         x=2

Vậy GTNN của C là 1 khi x=2

11 tháng 2 2022

\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)

Dấu ''='' xảy ra khi x = -1/2 

Vậy GTLN của Q là 2021 khi x = -1/2 

\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN của C là 2 khi x = 2 

\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)

Dấu = xảy ra khi x=-1

B=y^2-y+1

=y^2-2*y*1/2+1/4+3/4

=(y-1/2)^2+3/4>=3/4

Dấu = xảy ra khi y=1/2

E=-x^2+x+2

=-(x^2-x-2)

=-(x^2-x+1/4-9/4)

=-(x-1/2)^2+9/4<=9/4

Dấu = xảy ra khi x=1/2

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

5 tháng 8 2017

ta có : M=\(\frac{1}{x^2+x+1}=\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)

MÀ \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

Dấu '=' xảy ra khi : \(x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTLN của M là 4/3 khi x=-1/2

8 tháng 8 2016

\(C=x^2+y^2-3x+4y+5\)

\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(y+2\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)

2 tháng 11 2016

Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)

Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)

Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).

Vậy giá trị lớn nhất là \(\frac{1}{2}\)

Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)

 

30 tháng 12 2016

Như Nam có câu trả lời hay đó !!!

Vừa zễ hiểu, vừa zễ làm !

Thanks

8 tháng 8 2016

\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)

D đạt giá trị lớn nhất

<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất

<=> x2 + 1 đạt giá trị nhỏ nhất

x2 lớn hơn hoặc bằng 0

x2 + 1 lớn hơn hoặc bằng 1

\(\frac{1}{x^2+1}\le1\)

\(1+\frac{1}{x^2+1}\le2\)

Vậy Max D = 2 khi x = 0

19 tháng 9 2016

\(D=\frac{x^2+}{x^2+1}\)