Tìm Min Max của \(B=\frac{x^2+1}{x^2-x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow Bx^2+Bx+B=x^2-x+1\)
\(\Leftrightarrow x^2\left(B-1\right)+x\left(B+1\right)+B-1=0\)
\(TH1:B=1\Rightarrow x=0\left(1\right)\)
\(TH2:B\ne1\)
\(\Delta=b^2-4ac=\left(B+1\right)^2-4\left(B-1\right)^2=-3B^2+10B-3\)
Để PT trên có nghiệm thì denta >=0
\(\Leftrightarrow-3B^2+10B-3\ge0\)
\(\Leftrightarrow\frac{1}{3}\le B\le3\left(2\right)\)
Từ (1) và (2) => * GTLN của B là 3
khi: x = -1 (Bạn tự tìm nha)
* GTNN của B là 1/3
khi: x = 1 (Bạn tự tìm luôn)
..................... HẾT ..........................
\(P=\frac{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge1.\)
- TÌM MIN :
Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)
Vậy Min = \(\frac{1}{3}\Leftrightarrow x=-1\)
- TÌM MAX :
Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)
Vậy Max = 3 <=> x = 1
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
mấy bài như này hình như dùng miền giá trị được đó bạn
hộ mik nhé
tks bạn