K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

5 cm nha bạn

Chúc các bạn học giỏi

Tết vui vẻ nha

28 tháng 12 2016

Độ dài AH là 2,4 nhé bạn...chứ không phải 5

6 tháng 10 2015

Ta có tam giác vuông ABC=> AB2+AC2=BC2(do BC là cạnh huyền)

Mà AB=3cm; AC=4cm ta đc

32+42=BC2

=>9+16=BC2

=>BC=5(cm)

Diện tích hình tam giác là: 3.4/2=6(cm2)

Độ dài AH là:   6.2/5=2,4cm

Vậy AH=2,4cm

cuối cùng là = bao nhiu?

24 tháng 9 2015

Theo mình:

Tam giác ABC vuông tại A 

---> BA là đường cao ( BA vuông góc AC)

---> S tam giác ABC = \(\frac{a.h}{2}=\frac{AC.BC}{2}=\frac{4.3}{2}=6cm^2\)

Pytago tam giác ABC vuông tại A:

BC= BA2 + AC2 

       = 9 + 16

       = 25 

BC= 5 cm

Vì AH cũng là đường cao của tam giác ABC

----> AH = \(\frac{2.S}{a}=\frac{2.6}{BC}=\frac{12}{5}=2,4cm\)

Theo mình thì mình làm vậy á, nếu mình làm sai thì bạn sửa giùm mình nha

15 tháng 10 2017

bài làm ngu lắm

3 tháng 8 2016

A B H C

xét tam giác ABC vuông ở A co \(BC^2=AB^2+AC^2\left(pitago\right)\)

\(BC^2=9+16=25\Rightarrow BC=5\)

xet tgABH va tgCBA co  goc B chung   ; gAHB=gBAC =90

=>tgABH đồng dạng tgCBA   =>\(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{4}=\frac{3}{5}\Rightarrow AH=\frac{3\cdot4}{5}=\frac{12}{5}\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

\(S_{AHC}=\dfrac{AH\cdot HC}{2}=\dfrac{2.4\cdot3.2}{2}=2.4\cdot1.6=3.84\left(cm^2\right)\)

6 tháng 11 2021

Xét \(\Delta ABC\) vuông tại A có

  \(BC^2=AB^2+AC^2=25\)

      \(\Rightarrow BC=5\left(cm\right)\)

  AC\(^2\) = CH . CB = 5 CH

      \(\Rightarrow CH=3,2\left(cm\right)\)

  AB . AC = AH . BC \(\Rightarrow AH=2,4\)

  Nên \(S_{AHC}=\dfrac{1}{2}.AH.CH=\dfrac{1}{2}.2,4.3,2=3,84\left(cm^2\right)\)

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

18 tháng 6 2017

Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Đáp án cần chọn là: B