Qua trung điểm I của đoạn thẳng AB, vẽ đừong thẳng vuông góc vgới AB, trên đường thẳng vuông góc đó lấy điểm C
a) Chứng minh CA = CB
b) Chứng minh CI là tia phân giác của góc ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CI chung
IA=IB
Do đó: ΔCIA=ΔCIB
Suy ra: \(\widehat{ACI}=\widehat{BCI}\)
hay CI là tia phân giác của góc ACB
Ta có: M1^ + M2^ = 180o hay M1^ + 90o = 180o
=> M1^ = 180o - 90o = 90o
=> M1^ = M2^ = 90o
Xét ΔKAM và ΔKBM có:
KM Cạnh chung
M1^ = M2^ = 90o (cmt)
AM = BM (gt)
=> ΔKAM = ΔKBM (c.g.c)
=> K1^ = K2^ (2 góc tương ứng)
=> KM là tia phân giác của AKB^ (ĐPCM)
Bài làm
Xét tam giác CAM và tam giác ABM có:
AM = MB ( Do M là trung điểm AB )
/ CMA = / CMB ( cùng = 90o )
CM chung
=> Tam giác CAM = tam giác ABM ( c.g.c )
=> CA = CB ( hai cạnh tương ứng )
=> Tam giác CAB cân tại C
Vì tam giác CAM = tam giác ABM ( cmt )
=> / ACM = / BCM ( hai góc tương ứng )
=> CM là tia phân giác của góc ACB ( đpcm )
a) Xét ΔNAB có
I\(\in\)NI(gt)
M\(\in\)NB(gt)
IM//AB(gt)
Do đó: \(\dfrac{NI}{AI}=\dfrac{NM}{BM}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{NI}{AI}=1\)
\(\Leftrightarrow NI=AI\)
mà A,I,N thẳng hàng(gt)
nên I là trung điểm của AN(Đpcm)
Ta có hình vẽ sau:
Ta có: \(\widehat{M_1}\) + \(\widehat{M_2}\) = 180o hay \(\widehat{M_1}\) + 90o = 180o
\(\Rightarrow\) \(\widehat{M_1}\) = 180o - 90o = 90o
\(\Rightarrow\) \(\widehat{M_1}\) = \(\widehat{M_2}\) = 90o
Xét ΔKAM và ΔKBM có:
KM: Cạnh chung
\(\widehat{M_1}\) = \(\widehat{M_2}\) = 90o (cm trên)
AM = BM (gt)
\(\Rightarrow\) ΔKAM = ΔKBM (c.g.c)
\(\Rightarrow\) \(\widehat{K_1}\) = \(\widehat{K_2}\) (2 góc tương ứng)
\(\Rightarrow\) KM là tia phân giác của \(\widehat{AKB}\) (đpcm)
Gọi đường thẳng đó là x
Ta có hình vẽ:
Vì \(\widehat{AMK}\) +\(\widehat{BMK}\) = 1800 (kề bù)
Mà KM \(\perp\)AB => \(\widehat{AMK}\)=\(\widehat{BMK}\)=\(\frac{180^0}{2}\)=900
Vậy KM là phân giác góc AKB (đpcm)