K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

cái này bạn fai dùng hệ số bất định

28 tháng 12 2016

dạ bt rồi nhưng giải cách sao????

24 tháng 11 2022

v

27 tháng 5 2021

\(A=x^4-7x^3+10x^2+\left(a-1\right)x+b-a\)

\(A=x^4-6x^3+5x^2-x^3+6x^2-5x-x^2+\left(a-1\right)x+b-a\)

\(A=x^2\left(x^2-6x+5\right)-x\left(x^2-6x+5\right)-\left(x^2-\left(a-1\right)x+b-a\right)\)

Ta thấy

\(x^2\left(x^2-6x+5\right)-x\left(x^2-6x+5\right)\) chia hết cho B

\(\Rightarrow-\left(x^2-\left(a-1\right)x+b-a\right)\) phải chia hết cho B

\(\Leftrightarrow\left[{}\begin{matrix}a-1=6\\b-a=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=5\\b=0\end{matrix}\right.\)

 

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)