K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}\)

\(< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\left(\text{đpcm}\right)\)

5 tháng 9 2020

                Bài làm :

Ta có :

 \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}\)

\(\text{Vì : }\frac{1}{1990}>0\Rightarrow\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

=> Điều phải chứng minh

7 tháng 7 2016
  • 1/2.2<1/1.2                     
  • 1/3.3<2.3 
  •         ... 
  •        1/1990.1990<1/1990.1989 
  • => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989 

=>1/2^2+...+1/1990^2<1/1990<3/4 

14 tháng 10 2017

Ta có: 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2

       = 1/4 + 1/(3 * 3)+1/(4 * 4)+...+ 1/(1990 * 1990) 

       < 1/4 + 1/(2 * 3) + 1/(3 * 4) +...+1/(1989 * 1990)

       = 1/4 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/1989 - 1/1990

       = 3/4 - 1/1990 < 3/4.

Vậy 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2  < 3/4 (đpcm)

27 tháng 8 2016

Ta có:\(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{1990^2}< \frac{1}{1989.1990}\)

Do đó:\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

                                                          \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

                                                           \(=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)(đpcm)

27 tháng 8 2016

1/22 + 1/32 + 1/42 + ... + 1/19902

< 1/22 + 1/2×3 + 1/3×4 + ... + 1/1989×1990

< 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/1989 - 1/1990

< 1/4 + 1/2 - 1/1990 

< 1/4 + 1/2

< 3/4