Cho a+b=2 và a3+b3=14. Tính a5+b5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
Lời giải:
\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Do đó:
$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$
Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)
\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)
\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)
\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)
\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)
\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)
Do đó 2 đẳng thức trên không bằng nhau.
a5+b5=110
Cho mình xin câu trả lời chi tiết đc ko bạn???