K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Xét từng trường hơp  ban ak

15 tháng 1 2017

vì p là số nguyên  tố lớn hơn 3. => p có 2 dạng: p=3k+1 hoặc p=3k+2 ( k \(\in\)N*)

+) nếu p=3k+2 => 10p+1 = 10.(3k+2)+1

= 30k+20+1

=30k+21 \(⋮\) 3 và lớn hơn 3.

=> 10p+1 là hợp số (  trái với đề, loại )

do đó: p=3k+1

- nếu p=3k+1 => 17p+1 = 17.(3k+1)+1

=51k+17 +1 

=51k+18  \(⋮\) 3 và lớn hơn 3.

=>17p+1 là hợp số.

vậy 17p+1 là hợp số. ( điều phải chứng minh )

chúc bạn học giỏi, k mình nha.

25 tháng 12 2016

chẳng muốn làm

25 tháng 12 2016

thừa sức

25 tháng 9 2021

A

13 tháng 5 2017

Vì 20p+1 là 1 số nguyên tố
=) 20p+1 không chia hết cho 3 
=) 20p+1 : 3 dư 1 và dư 2
*Với 20p+1 : 3 dư 1 thì =) 20p+1+2 \(⋮3\)
*Với 20p+1 : 3 dư 2 thì =) 20p+1+1\(⋮3\)=) 20p+2\(⋮3\)=) 2.(10p+1)\(⋮3\)
(=) 10p+1\(⋮3\)( Vì 2 không chia hết cho 3 )
Vậy 10p+1 là hợp số (Đpcm)

13 tháng 5 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N).

* Với p=3k+1, ta có:

20p+1=20.(3k+1)+1=60k+20+1=60k+21 chia hết cho 3 => là hợp số=> loại

*Với p=3k+2, ta có:

20p+1=20.(3k+2)+1=60k+40+1=60k+41(là số nguyên tố)

10p+1=10.(3k+2)+1=30k+20+1=30k+21 chia hết cho 3 => là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 20p+1 cũng là số nguyên tố thì 10p+1 là hợp số.

14 tháng 10 2018

là hợp số bạn nha

ví dụ 1:P=5

ta có 5.5+1=26

26 là hợp số

ví dụ 2:P=7

7.5+1=36

36 là hợp số

6 tháng 8 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6

Chúc bn hok tốt

6 tháng 8 2016

+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2

Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại

=> p = 3k + 1

=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)

Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)

Bài này là chứng minh chứ ko fai tìm nha bn