Cho tam giác ABC vuông tại A, gọi D là một điểm nằm giữa B và C. Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua D kẻ đường thẳng song song với AC, cắt AB tại F.
a) Chứng minh tứ giác AEDF là hình chữ nhật.
b) Tìm vị trí của điểm D trên cạnh BC để tứ giác AEDF là hình vuông
c) Tìm vị trí của điểm D trên cạnh BC để độ dài đoạn thẳng EF là ngắn nhất.
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).