tìm các chữ số tận cùng S=1+31+32+33+.........+330
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
số tận cùng của 74^30 là (6)
số tận cùng của 49^31 là (9)
số tận cùng của 87^32 là (1);
số tận cùng của. 58^33 là (8);
số tận cùng của 23^35 là (7).
Ta có: 7430= 74.74.74.74.74.......74= TC6.TC6.TC6......TC6= TC6
TC là tận cùng nha bạn
bạn cứ lần lượt phân tích mấy các khác ra thế nhưng nhớ phân tích ra tận cùng =1;5;6 nha bạn
Có chỗ nào không hiểu hỏi mình
lik e nha bạn
7430 = 7428 . 742 = ( 744 )7 . .....6 = .....6 7 . ....6 = .....6 . ....6 = ....6
4931 = 4930 . 49 = (492 )15 . 49 = ....1 15 . 49 = .....1 . ...9 = ...9
97 32 = ( 97 4) 8 = .....1 8 = ....1
5833 = 58 32 . 58 = (584 ) 8 . 58 = ......6 8 . ....8 = ....6 . ....8 = ....8
23 35 = 2332 . 23 3 = (234)8 . .....3 3 = ....1 8 . ...7 = ....1 . ....7 = ...7
4931 = 4930+1= 4930 . 49 = (492)15 . (....9) = (...1)15.(...9) = (...1).(...9) = (...9)
Vậy 4931 có tận cùng là 9
8732 = (874)8 = (...1)8 = (...1)
Vậy 8732 có tận cùng là 1
5833 = 5832+1 = 5832.58 = (584)8.(...8) = (...6)8.(...8) = (...6).(..8) = (...8)
Vậy 5833 có tận cùng là 8
2335 = 2332+3 = 2332 . 232 = (234)8 .(...9) = (...1)8.(...9) = (...1).(...9) = (....9)
Vậy 2335 có tận cùng là 9
Lời giải:
$A=1+3+3^2+3^3+....+3^{30}$
$3A=3+3^2+3^3+....+3^{31}$
$3A-A=(3+3^2+3^3+...+3^{31})-(1+3+...+3^{30})$
$2A=3^{31}-1$
$A=\frac{3^{31}-1}{2}=\frac{3.3^{30}-1}{2}$
$=\frac{3.9^{15}-1}{2}$
Ta thấy: Đối với $9^n$ thì $n$ chẵn số này sẽ có tận cùng là $1$, $n$ lẻ sẽ có tận cùng là $9$
Vậy $9^{15}$ tận cùng là $9$
$\Rightarrow 3.9^{15}$ tận cùng là $7$
$\Rightarrow 3.9^{15}-1$ tận cùng là $6$
$\Rightarrow A=\frac{3.9^{15}-1}{2}$ tận cùng là $3$ hoặc $8$
Do đó $A$ không thể là scp.
Có : 7430 = 744.7.742 = (…6). (…6) = (…6);
4931 = (….9);
8732 = 874.8 = (…1);
5833 = 5832. 58 = 584.8. 58 = (…6). 58 = (…8);
2335 = 2332. 233 = (…1) .(…7) = (…7).
Có : 7430 = 744.7.742 = (…6). (…6) = (…6);
4931 = (….9);
8732 = 874.8 = (…1);
5833 = 5832. 58 = 584.8. 58 = (…6). 58 = (…8);
2335 = 2332. 233 = (…1) .(…7) = (…7).
Ta có : S = 1 + 3 + 32 + 33 + ... + 330
=> 3S = 3 + 32 + 33 + 34 + ... + 331
=> 3S-S = ( 3+32+33+34+...+331)-(1+3+32+33+...+330)
=> 2S = 331-1
Ta có : 331-1=328.33-1=(34)7.33-1=817-1=\(\overline{...1}^7-1=\overline{...1}-1=\overline{...0}\)
=> \(\left[{}\begin{matrix}S=\overline{...5}\\S=\overline{...0}\end{matrix}\right.\)
Vì S là tổng của 31 số lẻ nên S ⋮ 2
Như vậy S có chữ số tận cùng là 5
banj oiw choox 817 laf sao banj