K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

Ta có:

$\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow BC\perp AD$

$\widehat{ABD}=90^0$ (theo tính chất tiếp tuyến)

$\Rightarrow \triangle ABD$ vuông tại $B$

Vậy tam giác $ABD$ vuông tại $B$ có đường cao $BC$. Áp dụng công thức hệ thức lượng:

$BC^2=AC.CD$ (đpcm)

b. 

$BO=BC=OC$ nên $BOC$ là tam giác đều

$\Rightarrow \widehat{CBO}=60^0$

$\Rightarrow \widehat{DAB}=\widehat{CAD}=30^0$

Xét tam giác $ABD$ vuông:

$BC=AB\tan \widehat{DAB}=2R\tan 30^0=8\tan 30^0=\frac{8\sqrt{3}}{3}$ (cm)

 

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Hình vẽ:

11 tháng 12 2023

loading...

Ta có: ΔOCD cân tại O

mà OM là đường cao(OM\(\perp\)CD tại I)

nên OM là trung trực của CD

1 tháng 5 2021

ý a dễ

b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90

Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)

=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn

c/

Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)

số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)

số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)

Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC

1 tháng 5 2021

@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.

ta có: 
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)

15 tháng 10 2021

Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến

Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)

Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)

Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC

Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)

\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)

a: Xét tứ giác HMCN có 

\(\widehat{HMC}+\widehat{HNC}=180^0\)

Do đó: HMCN là tứ giác nội tiếp

b: Xét tứ giác ANMB có 

\(\widehat{ANB}=\widehat{AMB}=90^0\)

Do đó: ANMB là tứ giác nội tiếp

29 tháng 11 2023
  • Gọi I là giao điểm của EG và HF.
  • Theo định lí tiếp tuyến, ta có: $\angle{OBE} = \angle{OBF} = 90^\circ$ và $\angle{ODF} = \angle{ODG} = 90^\circ$.
  • Vì $BE$ và $DF$ là tiếp tuyến của đường tròn (O), nên $OE$ và $OF$ là phân giác của $\angle{BOD}$.
  • Tương tự, $OG$ và $OH$ là phân giác của $\angle{BOD}$.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, $OEIF$ và $OFIG$ là các hình chữ nhật.
  • Vì $OE = OF$ và $OG = OH$, nên $OEIF$ và $OFIG$ là các hình vuông.
  • Từ đó, ta có: $BE = EF$ và $DG = GH$.
  • Vì $ABCD$ là hình thoi, nên $AB = AD$ và $BC = CD$.
  • Khi đó, ta có: $AB = AD = BE + EF = BE + DF$ và $BC = CD = DG + GH = EG + HF$.
  • Từ đó, ta suy ra: $BE + DF = EG + HF$.
  • Do đó, $BE.DF = EG.HF$.
  • Từ định lí tiếp tuyến, ta có: $BE.DF = OB^2$ và $EG.HF = OG^2$.
  • Vì $OB = OG$ (bán kính đường tròn (O)), nên ta có: $BE.DF = OB.OD$.

Vậy, ta đã chứng minh được a) BE.DF = OB.OD.

b) Ta có:

  • Gọi I là giao điểm của EG và HF.
  • Theo chứng minh ở câu a), ta có: $OEIF$ và $OFIG$ là các hình vuông.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, ta có: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Từ đó, ta suy ra: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Vì $EG \parallel HF$, nên ta có: $\angle{EOI} + \angle{FOI} = 180^\circ$.
  • Từ đó, ta suy ra: $\angle{GOI} + \angle{HOI} = 180^\circ$.
  • Do đó, ta có: $\angle{GOI} = \angle{HOI}$.
  • Vậy, ta đã chứng minh được b) EG // HF.