tìm cặp số x,y biết 10^x+63=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x \(\in\)N* thì 10x có tận cùng là 0 nên 10x + 63 có tận cùng là 3.
Mà số chính phương ko có số nào có tận cùng là 3 \(\Rightarrow\)x = 0
Khi đó, 10x + 63 = y2
1 + 63 = y2
64 = y2
64 = 82
\(\Rightarrow\)y = 8.
Vậy x = 0, y = 8
x2-y2=-10 thì đúng hơn.
x2+y2 là 1 số dương sao bằng -10 được
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
\(\frac{x}{5}-\frac{1}{y+2}=\frac{1}{10}\)
\(\frac{1}{y+2}=\frac{x}{5}-\frac{1}{10}=\frac{2x}{10}-\frac{1}{10}=\frac{2x-1}{10}\)
\(\Rightarrow\left(y+2\right).\left(2x-1\right)=1.10=10\)
\(\Rightarrow2x-1\inƯ\left(10\right)\)
Mà 2x - 1 là lẻ
\(\Rightarrow2x-1\in\left[1;5;-1;-5\right]\)
Xét \(2x-1=1\Rightarrow x=1\)
\(\Rightarrow y+2=10\Rightarrow y=8\)
Xét \(2x-1=5\Rightarrow x=3\)
\(\Rightarrow y+2=2\Rightarrow y=0\)
Xét \(2x-1=-1\Rightarrow x=0\)
\(\Rightarrow y+2=-10\Rightarrow y=-12\)
Xét \(2x-1=-5\Rightarrow x=-2\)
\(\Rightarrow y+2=-2\Rightarrow y=-4\)
tính: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1982}+\frac{1}{1984}+\frac{1}{1986}\)