tìm x,y nguyên biết x^4-x^2+2x+2=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5) .
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
2.
\(\frac{2}{2x+1}=\frac{y}{4}\)
\(\Rightarrow y.\left(2x+1\right)=2.4=8\)
\(\Rightarrow y;2x+1\inƯ\left(8\right)\)
Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)
Ta có bảng:
2x+1 | -1 | 1 |
y | -8 | 8 |
x | -1 | 0 |
a)
(x+1)(y-2) = 3
=> x+1 và y-2 là các ước của 3
Ư(3) = {1; -1; 3; -3}
Lập bảng giá trị:
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy các cặp (x,y) cần tìm là:
(0; 5); (2; 3); (-2; -1); (-4; 1).
\(x^4-x^2+2x+2=\left(x+1\right)^2\left(x^2-2x+2\right)=y^2\)
\(x^2-2x+2=k^2\)
\(\left(x-1\right)^2+1=k^2\Leftrightarrow k^2-\left(x-1\right)^2=1\)
\(\orbr{\begin{cases}k=1\\x-1=0\Rightarrow x=1\end{cases}}\)
\(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)