tìm các số nguyên a, b,c ,d biết
a+b+c+d =1
a+b+c=2
a+b+d=3
a+b+c=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b=a+b+c+d-\left(a+c+d\right)=1-2=-1\\ c=a+b+c+d-\left(a+b+d\right)=1-3=-2\\ d=a+b+c+d-\left(a+b+c\right)=1-4=-3\\ a=a+b+c+d-b-c-d=1+1+2+3=7\)
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
Câu a đề thiếu, bạn xem lại rồi bổ sung
b, Ta có: 2a = 3b <=> a/3 = b/2 <=> a/21 = b/14 (1)
5b = 7c <=> b/7 = c/5 <=> b/14 = c/10 (2)
Từ (1), (2) => a/21 = b/14 = c/10 <=> 3a/63 = 5c/70 = 7c/70
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{63}=\frac{5c}{70}=\frac{7c}{70}=\frac{3a+5c-7b}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=\frac{10}{21}\\\frac{b}{14}=\frac{10}{21}\\\frac{c}{10}=\frac{10}{21}\end{cases}\Rightarrow}\hept{\begin{cases}a=10\\b=\frac{20}{3}\\c=\frac{100}{21}\end{cases}}\)
Vậy...
b.\(ĐK:x;y\in Z^+;x;y\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)
\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)
\(\Leftrightarrow x=\dfrac{5y}{y-5}\)
\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )
Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1:
\(y-5=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm ) ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )
Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:
\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)
Câu a mik ko bt nên bạn tham khảo nhé:
https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910
a/ \(a+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-10;-4;-2;4\right\}\)
b/ \(2a\inƯ\left(-10\right)\)
\(Ư\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Rightarrow a\in\left\{-5;-1;1;5\right\}\)do \(a\inℤ\)
c/ \(a+1\inƯ\left(3a+7\right)\Rightarrow3a+7⋮a+1\)
\(\Rightarrow3a+7-3\left(a+1\right)⋮a+1\)
\(\Leftrightarrow4⋮a+1\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow a\in\left\{-5;-3;-2;0;1;3\right\}\)
d/ \(2a+1\inƯ\left(3a+5\right)\Rightarrow3a+5⋮2a+1\)
\(\Rightarrow3a+5-\left(2a+1\right)⋮2a+1\)
\(\Leftrightarrow a+4⋮2a+1\)
\(\Rightarrow2\left(a+4\right)⋮2a+1\Leftrightarrow2a+8⋮2a+1\)
\(\Rightarrow2a+8-\left(2a+1\right)⋮2a+1\Leftrightarrow7⋮2a+1\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-4;-1;0;3\right\}\)
a+b+c=2 rồi mà a+b+c=4
Sai đề rồi!
Đề sai rồi