Cho hình thang cân ABCD(AB//CD). Chứng minh gócCAD=góc DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao điểm của AC và BD.
∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự ∆EAB cân tại A suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD
Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{CAD}=\widehat{DBC}\)
b: Ta có: ΔADC=ΔBCD
nên \(\widehat{ODC}=\widehat{OCD}\)
hay ΔOCD cân tại O
Suy ra: OC=OD
hay OA=OB
a: Sửa đề; DH=16cm
DC=16+9=25cm
DB=căn DH^2+HB^2=20cm
BC=căn 12^2+9^2=15cm
b: Xét ΔDBC có
DC^2=DB^2+BC^2
nên ΔBDC vuông tại B
c: ΔBDC vuông tại B có sin C=BD/DC=4/5
nên \(\widehat{C}\simeq53^0\)
=>\(\widehat{B}\simeq180^0-53^0=127^0\)
Kẻ AK vuông góc DC
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AK=BH=12cm
Xét ΔAKD vuông tại K có sin D=AK/AD=6/7
nên \(\widehat{D}\simeq59^0\)
=>góc A=180 độ-59 độ=121 độ
a: Sửa đề; DH=16cm
DC=16+9=25cm
DB=căn DH^2+HB^2=20cm
BC=căn 12^2+9^2=15cm
b: Xét ΔDBC có
DC^2=DB^2+BC^2 nên ΔBDC vuông tại B
c: ΔBDC vuông tại B có sin C=BD/DC=4/5 nên ˆ C ≃ 53*(*là độ C)
=> ˆ B ≃ 180* − 53* = 127*
Kẻ AK vuông góc DC
Xét tứ giác ABHK có: AB//HK AK//HB
=>ABHK là hình bình hành
=>AK=BH=12cm Xét ΔAKD vuông tại K có sin D=AK/AD=6/7 nên ˆ D ≃ 59*
=>góc A=180 độ-59 độ=121 độ
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Đặt điểm E đối xứng tâm A nối E với lần lượt 2 điểm A và B
Tam giác DEC có góc D = góc C => Cân
A là trung điểm của ED => CA là chiều cao tam giác DEC nằm trên cạnh ED
=> góc CAD = 90 độ
Tương tự với DB => DBC = 90
=> Điều cần chứng minh
có gì không hiểu hỏi lại mình nhé. nhớ vẽ hình ra sẽ dễ nhìn hơn